高性能浮點(diǎn)加法器的研究與設(shè)計(jì)
本文選題:浮點(diǎn)加法 + 雙通道算法。 參考:《南京航空航天大學(xué)》2012年碩士論文
【摘要】:隨著信息應(yīng)用領(lǐng)域?qū)?shù)據(jù)運(yùn)算精度要求的不斷提高和數(shù)值運(yùn)算范圍的不斷擴(kuò)大,現(xiàn)代微處理器中,浮點(diǎn)運(yùn)算單元(Floating-point Unit,F(xiàn)PU)的研究顯得越來越重要。根據(jù)相關(guān)技術(shù)報(bào)告,浮點(diǎn)運(yùn)算中55%以上是浮點(diǎn)加法運(yùn)算。因此,浮點(diǎn)加法是使用頻率最高的浮點(diǎn)運(yùn)算,浮點(diǎn)加法器也成為微處理器、現(xiàn)代信號(hào)處理系統(tǒng)中最重要的部件之一。IEEE-754標(biāo)準(zhǔn)中浮點(diǎn)數(shù)定義的復(fù)雜性使得硬件實(shí)現(xiàn)浮點(diǎn)加法操作的速度遠(yuǎn)低于定點(diǎn)數(shù)。 本文在傳統(tǒng)浮點(diǎn)加法器串行計(jì)算結(jié)構(gòu)的基礎(chǔ)上,討論了并行計(jì)算的雙通道算法,改進(jìn)的雙通道算法等結(jié)構(gòu)。在雙通道結(jié)構(gòu)中,,分析研究前導(dǎo)1(前導(dǎo)0)預(yù)測(cè)算法,桶形移位器等關(guān)鍵結(jié)構(gòu)和模塊。在深入研究和分析這些關(guān)鍵結(jié)構(gòu)和模塊之后,總體上確定了以雙通道算法為本文所設(shè)計(jì)的浮點(diǎn)加法器的結(jié)構(gòu)。在前導(dǎo)1預(yù)測(cè)的模塊中,以預(yù)編碼邏輯為基礎(chǔ),對(duì)預(yù)編碼進(jìn)行前導(dǎo)1檢測(cè)。此外,移位器使用純組合邏輯電路的桶形移位器,以避免使用移位寄存器邏輯電路所帶來的延時(shí)。 定點(diǎn)加法器作為浮點(diǎn)加法運(yùn)算中不可或缺的模塊之一,很大程度上制約著浮點(diǎn)加法器的性能。本文在定點(diǎn)加法器部分,在傳統(tǒng)并行前綴加法器原有的結(jié)構(gòu)基礎(chǔ)上,介紹了一種高速的Ling進(jìn)位加法器,并且提出了一種基于Ling加法器的邏輯電路層次結(jié)構(gòu)上的改進(jìn)的加法器。實(shí)驗(yàn)數(shù)據(jù)表明,本文設(shè)計(jì)的改進(jìn)32位Ling加法器比傳統(tǒng)32位并行前綴Ling加法器延時(shí)降低了約18%,同時(shí)面積上也減小了20%左右。本文使用一個(gè)24位的改進(jìn)Ling加法器用于浮點(diǎn)加法器的尾數(shù)運(yùn)算模塊中,使得優(yōu)化后的浮點(diǎn)加法器延時(shí)進(jìn)一步減小。 論文完成了浮點(diǎn)加法器從體系結(jié)構(gòu)選擇、算法研究到可綜合的代碼編寫、仿真綜合等一系列工作。所有的設(shè)計(jì)均使用VerilogHDL語言作為設(shè)計(jì)輸入,所有的數(shù)據(jù)均在Synopsys的DC下進(jìn)行綜合得到。實(shí)驗(yàn)結(jié)果表明,本文設(shè)計(jì)的浮點(diǎn)加法器可以高效地、正確地完成浮點(diǎn)加法運(yùn)算,達(dá)到了預(yù)期的目標(biāo)。
[Abstract]:With the improvement of the precision of data operation and the expansion of numerical operation range in the field of information application, the research of floating-point unit (Floating-point unit FPU) is becoming more and more important in modern microprocessors. According to relevant technical reports, more than 55% of floating-point operations are floating-point addition operations. Therefore, floating-point addition is a floating-point operation with the highest frequency, and the floating-point adder becomes a microprocessor. The complexity of floating-point definition in IEEE-754 standard makes the speed of floating-point addition in hardware much lower than the number of fixed points. Based on the serial computing structure of the traditional floating-point adder, this paper discusses the two-channel algorithm for parallel computing and the improved two-channel algorithm for parallel computing. In the dual channel structure, the key structures and modules, such as preamble 1 (lead 0) prediction algorithm, bucket shifter and so on, are analyzed and studied. After deeply studying and analyzing these key structures and modules, the structure of the floating-point adder designed in this paper based on the two-channel algorithm is determined. In the precoding 1 prediction module, precoding logic is used to detect the precoding. In addition, the shifter uses a bucket shifter of pure combinational logic circuits to avoid the delay caused by the use of shift register logic circuits. As one of the indispensable modules in floating-point addition, fixed-point adder restricts the performance of floating-point adder to a great extent. In the part of fixed-point adder, this paper introduces a high-speed Ling carry adder based on the original structure of traditional parallel prefix adder, and proposes an improved adder based on Ling adder in logic circuit hierarchy. The experimental data show that the improved 32-bit Ling adder can reduce the delay time by about 18% and reduce the area by about 20% compared with the traditional 32-bit parallel prefix Ling adder. In this paper, a 24-bit improved Ling adder is used in the Mantissa calculation module of the floating-point adder, which further reduces the delay of the optimized floating-point adder. In this paper, a series of tasks, such as architecture selection, algorithm research, compositive coding, simulation synthesis and so on, are completed. All the designs use VerilogHDL language as the design input, and all the data are synthesized under the DC of Synopsys. The experimental results show that the floating-point adder designed in this paper can accomplish floating-point addition efficiently and correctly, and achieve the desired goal.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TP332.21
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 崔曉平;王成華;;二級(jí)進(jìn)位跳躍加法器的優(yōu)化方塊分配[J];北京航空航天大學(xué)學(xué)報(bào);2007年04期
2 楊靚,徐煒,黃士坦;FPGA上浮點(diǎn)加/減法器的設(shè)計(jì)[J];計(jì)算機(jī)工程與應(yīng)用;2003年02期
3 崔曉平;王成華;;快速靜態(tài)進(jìn)位跳躍加法器[J];南京理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期
4 夏杰;宣志斌;薛忠杰;;基于流水線結(jié)構(gòu)的浮點(diǎn)加法器IP核設(shè)計(jì)[J];微計(jì)算機(jī)信息;2008年27期
相關(guān)博士學(xué)位論文 前1條
1 孫海平;計(jì)算機(jī)算術(shù)中若干前綴計(jì)算問題的研究[D];合肥工業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 靳戰(zhàn)鵬;高速浮點(diǎn)加法運(yùn)算單元的研究與實(shí)現(xiàn)[D];西北工業(yè)大學(xué);2006年
2 李兆亮;“銀河飛騰”DSP的ALU單元全定制設(shè)計(jì)優(yōu)化[D];國防科學(xué)技術(shù)大學(xué);2006年
3 黎淵;高性能浮點(diǎn)乘、加部件的研究與實(shí)現(xiàn)[D];國防科學(xué)技術(shù)大學(xué);2008年
4 陳芳園;浮點(diǎn)處理單元設(shè)計(jì)關(guān)鍵技術(shù)研究與實(shí)現(xiàn)[D];國防科學(xué)技術(shù)大學(xué);2008年
本文編號(hào):1900353
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1900353.html