基于DNA折紙技術的分子計算模型研究
發(fā)布時間:2018-05-16 06:13
本文選題:DNA折紙 + 分子計算 ; 參考:《華北電力大學(北京)》2017年碩士論文
【摘要】:近年來,隨著量子計算、光子計算、納米計算等新興計算領域的快速發(fā)展,DNA納米計算的研究已經(jīng)成為前沿熱點。納米計算憑借其天然的微觀分子特異性效應,在新型高性能計算的發(fā)展中有著舉足輕重的地位。DNA自組裝折紙技術的發(fā)展為納米微觀操控奠定了堅實的基礎,拓展了新的維度;贒NA自組裝的納米芯片具有微觀可編程操控性、巨大并行性和高密度信息存儲能力,已被廣泛應用于復雜計算、信息處理、特異識別、納米機器、數(shù)據(jù)存儲、密碼技術、生物芯片、分子檢測等方面。其中,結(jié)合納米顆粒技術的分子計算信息處理方法也逐漸引起學者們的重視。本論文主要利用SARSE、CADNano等軟件將計算模型設計編碼為DNA鏈,并利用C語言檢測關鍵運算鏈的沖突以及穩(wěn)定性并改進編碼方案。通過設計的DNA鏈自組裝形成DNA折紙、鏈置換實現(xiàn)計算,輔以DNA納米折紙芯片技術和納米顆粒等的操控手段,將DNA折紙與分子計算相結(jié)合,分別對納米密碼計算模型和分子邏輯門進行多角度多層次研究。一、基于金顆粒自組裝的拉姆齊(Ramsey)數(shù)求解計算模型。該計算模型將計算機科學中的成型理論方法和納米技術相結(jié)合,對基于DNA納米芯片技術的分子計算模型展開研究。Ramsey數(shù)在邏輯分析中起著重要作用,由于其解空間的復雜性目前僅找到了9個Ramsey數(shù),DNA計算強大的并行性在解決NP完全問題方面取得了突破,我們使用將三角形轉(zhuǎn)換為頂點的圖形轉(zhuǎn)換模型提供一個新的分子模型。在構(gòu)建的計算模型中,我們利用納米金顆粒(Gold nanoparticle,AuNP)自組裝設計特異識別頂點,以便檢測解決方案的可行性,并利用計算機仿真模擬檢測效果和解空間覆蓋率。最后,通過驗證Ramsey定理的逆否命題,證明4(3,3)為非解。二、基于DNA折紙上動態(tài)排布金顆粒構(gòu)建的分子邏輯門。分子邏輯門通過DNA鏈與特定位點的置換關系和特異性修飾,實現(xiàn)納米顆粒的定點操控、定點釋放,由此作為一種通用的信息計算元件;谠摬呗越⒘艘唤MDNA分子邏輯門(與,或和三輸入多數(shù)門),其中計算結(jié)果通過AuNP和DNA折紙之間的拆解來鑒定。最后,借助電泳和電鏡等多重檢測,觀測得到的結(jié)構(gòu)并解析計算結(jié)果。同時,對智能納米裝置和納米尺度高密度大容量信息加密存儲進行基礎研究。
[Abstract]:In recent years, with the rapid development of quantum computing, photon computing, nanocomputing and other emerging fields of computing, the research of DNA nanocomputing has become a hot frontier. Because of its natural micromolecular specificity, nanocomputing plays an important role in the development of new high-performance computing. The development of DNA self-assembly origami technology has laid a solid foundation for nano-micro manipulation and expanded new dimensions. Nanochips based on DNA self-assembly have been widely used in complex computing, information processing, specific recognition, nano-machine, data storage, cryptography, and have been widely used in complex computing, information processing, nanometer-machine, data storage, and high-density information storage, with micro-programmable manipulation, huge parallelism and high density information storage. Biochip, molecular detection and so on. Among them, the molecular computing information processing method combined with nanoparticles technology has been paid more and more attention by scholars. In this paper, the software SARSEN CADNano is used to code the computational model into DNA chain, and C language is used to detect the collision and stability of the key operation chain and to improve the coding scheme. The DNA origami was formed by self-assembly of the DNA chain, and the chain replacement was used to realize the calculation. The DNA origami was combined with the molecular calculation by using the DNA nano-origami chip technology and the manipulating means of the nanoparticles. The nanocrystalline cryptographic model and molecular logic gate are studied in multi-angle and multi-level respectively. One is to solve the model based on the Ramsey Ramsey number of gold particles. The model combines the shaping theory and nanotechnology in computer science, and studies the molecular computing model based on DNA nanochip technology. Ramsey number plays an important role in logic analysis. Because the complexity of the solution space has only found nine Ramsey numbers and strong parallelism in solving NP-complete problems, we provide a new molecular model by using the graph transformation model which converts triangles to vertices. In order to detect the feasibility of the solution, we use the gold nanoparticles Gold nanoparticleus AuNPNPA to design special recognition vertices in order to detect the feasibility of the solution, and to simulate the detection effect and the spatial coverage rate by computer simulation. Finally, by verifying the inverse proposition of Ramsey's theorem, it is proved that 4 ~ 3 ~ 3) is a non-solution. Secondly, the molecular logic gate based on the dynamic arrangement of gold particles on DNA origami. The molecular logic gate realizes the fixed point manipulation and release of the nanoparticles through the substitution relationship and specific modification of the DNA chain with the specific site, which is a general information computing element. Based on this strategy, a set of DNA molecular logic gates (with, or with, and three input majority gates) are established, where the results are identified by disassembly between AuNP and DNA origami. Finally, the structure was observed and the calculated results were analyzed by means of electrophoretic and electron microscopy. At the same time, the basic research on intelligent nanodevices and high density and large capacity information encryption storage at nanometer scale is carried out.
【學位授予單位】:華北電力大學(北京)
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP384
【參考文獻】
相關期刊論文 前6條
1 王延峰;韓琴琴;韓棟;王燕;張勛才;崔光照;;基于核酸的信息安全技術研究現(xiàn)狀及發(fā)展建議[J];中國科學院院刊;2014年01期
2 蔣君;殷志祥;;DNA密碼對比傳統(tǒng)密碼學與量子密碼學的優(yōu)勢與不足[J];科技視界;2012年24期
3 張成;楊靜;許進;;自組裝DNA/納米顆粒分子邏輯計算模型[J];科學通報;2011年27期
4 錢璐璐;汪穎;張釗;趙健;潘敦;張益;劉強;樊春海;胡鈞;賀林;;DNA納米結(jié)構(gòu)仿中國地圖[J];科學通報;2006年24期
5 肖國鎮(zhèn);盧明欣;;DNA計算與DNA密碼[J];工程數(shù)學學報;2006年01期
6 劉紅俠,郝躍;薄柵氧化層擊穿特性的實驗研究[J];半導體學報;2000年02期
,本文編號:1895775
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1895775.html
最近更新
教材專著