基于RapidIO的大容量固態(tài)存儲(chǔ)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
本文選題:串行Rapid + IO; 參考:《電子科技大學(xué)》2016年碩士論文
【摘要】:在軍事運(yùn)用領(lǐng)域,由于其對(duì)硬件環(huán)境要求的嚴(yán)苛性,機(jī)械存儲(chǔ)設(shè)備無(wú)法滿足需求,絕大部分場(chǎng)合都是使用固態(tài)存儲(chǔ)技術(shù)來(lái)實(shí)現(xiàn)大容量存儲(chǔ)。早期的軍用實(shí)現(xiàn)方案為基于掉電備份的DRAM存儲(chǔ),但由于該技術(shù)需要獨(dú)立的供電系統(tǒng),系統(tǒng)功耗高、存儲(chǔ)的容價(jià)比高等缺點(diǎn),已逐漸被淘汰,轉(zhuǎn)而由基于閃存的固態(tài)存儲(chǔ)技術(shù)來(lái)實(shí)現(xiàn)。存儲(chǔ)在軍事場(chǎng)合的應(yīng)用,如雷達(dá)前端采集數(shù)據(jù)的存儲(chǔ)、傳感器前端采集數(shù)據(jù)的存儲(chǔ)等,數(shù)據(jù)存儲(chǔ)的需求大部分是:連續(xù)寫入;寫入、讀取帶寬需持續(xù)保證;系統(tǒng)需具備文件刪除等管理功能。面對(duì)這些需求,若直接采用固態(tài)存儲(chǔ)盤(SSD)來(lái)進(jìn)行存儲(chǔ)管理,可能會(huì)存在多次寫入、刪除文件操作后,數(shù)據(jù)存儲(chǔ)速度變慢,寫入帶寬短時(shí)間內(nèi)不滿足最低存儲(chǔ)要求的情況。為了避免這些問(wèn)題,目前廣泛使用的方法是采用NAND Flash顆粒組成專用存儲(chǔ)系統(tǒng)。早期國(guó)內(nèi)各大院校以及科研機(jī)構(gòu)都開(kāi)發(fā)出過(guò)基于NAND Flash顆粒的大容量存儲(chǔ)設(shè)備,但大部分的設(shè)計(jì)方案還是停留在簡(jiǎn)單的順序存儲(chǔ)、讀取設(shè)計(jì)上,也就是不支持文件的管理,對(duì)多用戶接入、多數(shù)據(jù)源存儲(chǔ)、讀寫同時(shí)操作的應(yīng)用場(chǎng)合是不能夠很好的支持。針對(duì)日益變化的存儲(chǔ)需求,本文設(shè)計(jì)了一種基于Rapid IO接口的固態(tài)存儲(chǔ)系統(tǒng)。該存儲(chǔ)系統(tǒng)采用同步MLC NAND Flash作為存儲(chǔ)介質(zhì),使用16通道8級(jí)流水寫入技術(shù),使后端連續(xù)存儲(chǔ)速度可達(dá)4GB/s以上,且隨機(jī)1MB塊數(shù)據(jù)讀取速度可達(dá)2.4GB/s以上。ECC處理方面則采用BCH編解碼算法,每個(gè)通道使用一個(gè)帶寬達(dá)200MB/s的處理核,從而使整個(gè)系統(tǒng)的ECC處理帶寬大于2.4GB/s。前端3通道串行Rapid IO接口通過(guò)自定義命令通信協(xié)議以及數(shù)據(jù)通信協(xié)議,支持多達(dá)32個(gè)用戶同時(shí)操作存儲(chǔ)系統(tǒng),以及數(shù)據(jù)存入的每個(gè)物理通道以及邏輯通道獨(dú)立形成數(shù)據(jù)文件。緩存方面系統(tǒng)采用高達(dá)2GB的DDR3L顆粒組作為數(shù)據(jù)讀寫緩存,并且基于LRU技術(shù)處理,使數(shù)據(jù)瀏覽的響應(yīng)速度達(dá)到最快。最后本文設(shè)計(jì)了一種容許大碎片的高速存儲(chǔ)FTL算法,使本系統(tǒng)在軍事應(yīng)用場(chǎng)合中能夠很好的滿足文件管理后,存儲(chǔ)速度不受影響的要求。
[Abstract]:In the field of military application, due to the harsh requirements of hardware environment, mechanical storage equipment can not meet the demand. In most cases, solid state storage technology is used to achieve large capacity storage. The early military implementation scheme was DRAM storage based on power off backup. However, due to the need of independent power supply system, high power consumption, high storage cost ratio and other shortcomings, this technology has been gradually eliminated. Instead, it is based on flash-based solid-state storage technology. In military applications, such as radar front-end data storage, sensor front-end data acquisition data storage, most of the data storage requirements are: continuous writing, write, read bandwidth need to be continuously guaranteed; The system must have file deletion and other management functions. In the face of these requirements, if the storage management is directly based on solid state storage disk (SSD), there may be many writes, after deleting files, the data storage speed becomes slower, and the write bandwidth does not meet the minimum storage requirements in a short time. In order to avoid these problems, the widely used method is to use NAND Flash particles to form a special storage system. In the early years, universities and scientific research institutes developed large capacity storage devices based on NAND Flash particles, but most of the design schemes remained in simple sequential storage, read design, that is, do not support the management of files. For multi-user access, multi-data source storage, read-write simultaneous operation of applications can not be very good support. A solid state storage system based on Rapid IO interface is designed to meet the changing storage requirements. The storage system uses synchronous MLC NAND Flash as storage medium and 16-channel 8-level pipeline writing technology to make the backend continuous storage speed more than 4GB/s. In the aspect of reading speed of random 1MB block data up to 2.4GB/s, the BCH codec algorithm is adopted. Each channel uses a processing core with bandwidth up to 200MB/s, thus making the ECC processing bandwidth of the whole system more than 2.4 GB / s. The front-end three-channel serial Rapid IO interface supports up to 32 users to operate the storage system simultaneously through the custom command communication protocol and the data communication protocol, and each physical channel and logical channel stored in the data can independently form the data file. In the cache system, the DDR3L granular group up to 2GB is used as the data read / write cache, and based on the LRU technology, the response speed of the data browsing is the fastest. Finally, this paper designs a high-speed storage FTL algorithm to allow large fragments, so that the system can meet the requirements of file management after the storage speed is not affected in military applications.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP333
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 華斌;黃杰文;周章倫;孫建濤;張平;;基于FPGA的高速大容量固態(tài)存儲(chǔ)設(shè)備數(shù)據(jù)ECC的設(shè)計(jì)與實(shí)現(xiàn)[J];科學(xué)技術(shù)與工程;2010年18期
2 韓茜,羅豐,吳順君;高速大容量固態(tài)存儲(chǔ)系統(tǒng)的設(shè)計(jì)[J];雷達(dá)科學(xué)與技術(shù);2005年02期
相關(guān)博士學(xué)位論文 前1條
1 朱巖;基于閃存的星載高速大容量存儲(chǔ)技術(shù)的研究[D];中國(guó)科學(xué)院研究生院(空間科學(xué)與應(yīng)用研究中心);2006年
相關(guān)碩士學(xué)位論文 前8條
1 雷雨;基于PCIE固態(tài)硬盤的嵌入式存儲(chǔ)技術(shù)[D];中國(guó)科學(xué)院研究生院(光電技術(shù)研究所);2014年
2 滕達(dá);基于FPGA的快閃存儲(chǔ)器糾錯(cuò)電路設(shè)計(jì)與實(shí)現(xiàn)[D];山東大學(xué);2014年
3 陳仁鋼;面向固態(tài)存儲(chǔ)的BCH-ECC的算法研究與硬件設(shè)計(jì)[D];重慶大學(xué);2012年
4 張超;高速數(shù)據(jù)采集與大容量固態(tài)存儲(chǔ)系統(tǒng)設(shè)計(jì)[D];西安電子科技大學(xué);2012年
5 李華;大容量固態(tài)存儲(chǔ)陣列的關(guān)鍵技術(shù)[D];西安電子科技大學(xué);2011年
6 吳昊;高速大容量固態(tài)存儲(chǔ)系統(tǒng)設(shè)計(jì)[D];西安電子科技大學(xué);2010年
7 雷磊;NAND型FLASH海量存儲(chǔ)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京理工大學(xué);2008年
8 王s,
本文編號(hào):1801134
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1801134.html