ZnO薄膜和納米線阻變存儲(chǔ)器制備、性能及機(jī)理研究
發(fā)布時(shí)間:2018-04-10 16:36
本文選題:電阻型存儲(chǔ)器 + 阻變; 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:隨著電子器件尺寸的縮小,傳統(tǒng)的Flash非揮發(fā)性存儲(chǔ)器遇到了漏電等一系列難題,嚴(yán)重阻礙了其發(fā)展。而基于電致電阻效應(yīng)的阻變存儲(chǔ)器(RRAM)具有非易失、結(jié)構(gòu)簡單、存儲(chǔ)密度高、讀寫速度快、功耗低、與傳統(tǒng)CMOS工藝兼容性好等優(yōu)點(diǎn),有望取代傳統(tǒng)的存儲(chǔ)器,因此受到廣泛研究和關(guān)注。在眾多的阻變材料中,由于Zn O材料具有價(jià)格便宜,成分簡單,易制備等特點(diǎn),因此Zn O材料是RRAM的理想候選材料之一。本文主要以Zn O薄膜材料和納米線(NW)作為RRAM器件的阻變材料,研究了器件制備,阻變行為及相應(yīng)的阻變機(jī)理,主要研究內(nèi)容如下:(一)基于Zn O薄膜RRAM器件的研究研究了Cu/Zn O/Pt器件基于兩種不同導(dǎo)電絲形成機(jī)制的阻變行為,即電化學(xué)金屬化(ECM)機(jī)制和價(jià)變(VCM)機(jī)制。通過細(xì)致考察器件低阻態(tài)電阻隨溫度的變化關(guān)系,發(fā)現(xiàn)Cu/Zn O/Pt器件中VCM機(jī)制形成的導(dǎo)電絲成分是鋅,ECM機(jī)制形成的導(dǎo)電絲成分是銅。通過形成不同成分的導(dǎo)電絲,實(shí)現(xiàn)了器件的多模式操作,并且發(fā)現(xiàn)器件的操作可以在兩種不同阻變機(jī)制之間可逆穩(wěn)定切換。(二)基于單根Zn O納米線的RRAM器件的研究隨著器件尺寸的不斷縮小,基于一維納米線的阻變存儲(chǔ)器具有重要的研究價(jià)值。本文通過拉絲法制備了基于單根Zn O納米線的Ag/Zn O NW/Ag RRAM器件,器件表現(xiàn)出雙極性阻變特性,FORM(由初始態(tài)轉(zhuǎn)變?yōu)榈妥钁B(tài)的過程)電壓一般大于10 V,SET(高阻態(tài)轉(zhuǎn)變?yōu)榈妥钁B(tài)的過程)和RESET(低阻態(tài)轉(zhuǎn)變?yōu)楦咦钁B(tài)的過程)電壓相對(duì)較小并且集中,開關(guān)比(高阻態(tài)與低阻態(tài)的阻值之比)大于109,但器件抗疲勞(高低阻態(tài)之間可逆切換)特性較差。(三)基于銀修飾單根Zn O納米線的RRAM器件的研究為改善Zn O納米線器件的阻變特性,采用光化學(xué)沉積法對(duì)Zn O納米線表面進(jìn)行銀修飾,經(jīng)過修飾后的器件阻變性能得到提升,FORM電壓大幅降至3 V以下,高低阻態(tài)穩(wěn)定性和抗疲勞特性均得到改善,進(jìn)一步發(fā)現(xiàn)銀修飾后,器件表現(xiàn)出多級(jí)存儲(chǔ)現(xiàn)象。最后解釋了銀修飾納米線器件性能提升的原因。
[Abstract]:With the reduction of electronic device size, the traditional Flash nonvolatile memory has encountered a series of problems, such as leakage, which seriously hindered its development.The resistive memory (RRAM) based on electroresistance effect has the advantages of non-volatile, simple structure, high storage density, fast reading and writing speed, low power consumption and good compatibility with the traditional CMOS process, which is expected to replace the traditional memory.As a result, it has received extensive research and attention.Zno is one of the ideal candidate materials for RRAM because of its low price, simple composition and easy preparation.In this paper, Zno thin film and nanowire NW) are used as the resistive materials of RRAM devices. The fabrication, the resistance behavior and the corresponding resistance mechanism of the devices are studied.The main contents are as follows: (1) based on ZnO thin film RRAM devices, the resistance behavior of Cu/Zn O/Pt devices based on two different kinds of conductive wire formation mechanisms, namely electrochemical metallization mechanism and valence shift mechanism, are studied.It is found that the component of conductive wire formed by VCM mechanism in Cu/Zn O/Pt device is copper by careful investigation of the change of low resistance state resistance with temperature.The multi-mode operation of the device is realized by the formation of conductive wire with different components, and it is found that the operation of the device can be switched steadily between two different resistance mechanisms.(2) the research of RRAM devices based on single Zno nanowires is of great value in the research of resistive memory based on one-dimensional nanowires with the decreasing of device size.In this paper, Ag/Zn O NW/Ag RRAM devices based on single ZnO nanowires were fabricated by wire drawing.The device exhibits bipolar resistive characteristics: the voltage of FORM (the process of transition from the initial state to the state of low resistance) is generally greater than 10 V set (the process of transition from high resistance to low resistance) and the voltage of RESET (the process of transition from low resistance to high resistance) is relatively small and concentrated.The switching ratio (the ratio of high resistance to low resistance) is greater than 109, but the fatigue resistance (reversible switching between high and low resistance states) is poor.(3) in order to improve the resistance of Zno nanowires, silver modification of ZnO nanowires was carried out by photochemical deposition in order to improve the resistance of ZnO devices based on silver modified ZnO nanowires.After modification, the voltage of form is greatly reduced to less than 3 V, and the high and low resistance state stability and fatigue resistance are improved. It is further found that after silver modification, the device exhibits multistage storage.Finally, the reasons for the improvement of the performance of silver modified nanowire devices are explained.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383;TP333
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 張育潛;傅莉;;俘獲和去俘獲對(duì)Au/HfO_2界面導(dǎo)電機(jī)制的影響(英文)[J];稀有金屬材料與工程;2015年12期
2 伏兵;諸葛飛;劉志敏;羅浩;梁凌燕;高俊華;曹鴻濤;;氬等離子體處理對(duì)ZnO薄膜阻變效應(yīng)的影響[J];材料科學(xué)與工程學(xué)報(bào);2014年06期
3 余東海;王成勇;成曉玲;宋月賢;;磁控濺射鍍膜技術(shù)的發(fā)展[J];真空;2009年02期
4 李穎_";劉明;龍世兵;劉琦;張森;王艷;左青云;王琴;胡媛;劉肅;;基于I-V特性的阻變存儲(chǔ)器的阻變機(jī)制研究[J];微納電子技術(shù);2009年03期
,本文編號(hào):1732082
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1732082.html
最近更新
教材專著