云計(jì)算環(huán)境下虛擬機(jī)資源分配及部署策略研究
發(fā)布時(shí)間:2018-04-02 17:33
本文選題:云計(jì)算 切入點(diǎn):虛擬機(jī) 出處:《云南大學(xué)》2012年碩士論文
【摘要】:云計(jì)算的出現(xiàn)改變了傳統(tǒng)的計(jì)算資源交付模式,是當(dāng)前研究的熱點(diǎn)。由于云計(jì)算的按需提供資源、按使用量付費(fèi)以及動(dòng)態(tài)伸縮性等特點(diǎn),對(duì)于云計(jì)算的研究還存在著諸多挑戰(zhàn),特別是虛擬機(jī)資源的分配、部署、遷移以及物理服務(wù)器的整合等。虛擬機(jī)資源的分配與部署是云計(jì)算研究中的兩個(gè)核心問題。傳統(tǒng)的對(duì)于虛擬機(jī)資源分配與部署的研究都是基于單方面的考慮,忽略了一些用戶和云服務(wù)提供商所關(guān)心的參數(shù)。因此,研究虛擬機(jī)資源在云計(jì)算市場中如何進(jìn)行分配以及虛擬機(jī)在數(shù)據(jù)中心內(nèi)如何部署具有重要的學(xué)術(shù)意義和應(yīng)用價(jià)值。 針對(duì)虛擬機(jī)資源分配問題,本文以云計(jì)算市場中的云計(jì)算服務(wù)提供商為研究對(duì)象,引入了經(jīng)濟(jì)學(xué)中的演化博弈理論,對(duì)云計(jì)算中虛擬機(jī)資源的分配進(jìn)行建模分析。在整個(gè)云計(jì)算市場中,云計(jì)算服務(wù)提供商發(fā)布的虛擬機(jī)資源的價(jià)格以及服務(wù)質(zhì)量作為博弈策略。對(duì)云服務(wù)提供商發(fā)布的價(jià)格和服務(wù)質(zhì)量進(jìn)行演化博弈,在博弈的過程中,云計(jì)算服務(wù)提供商為了提高自身的效用動(dòng)態(tài)的調(diào)整自己的博弈策略。最后從理論上和實(shí)驗(yàn)上證明了整個(gè)虛擬機(jī)資源分配過程能達(dá)到演化穩(wěn)定。 針對(duì)虛擬機(jī)資源部署問題,本文以云計(jì)算服務(wù)提供商的數(shù)據(jù)中心為研究對(duì)象,以粒子群優(yōu)化算法為理論指導(dǎo),對(duì)數(shù)據(jù)中心內(nèi)虛擬機(jī)資源的部署進(jìn)行建模分析。對(duì)每個(gè)物理機(jī)和虛擬機(jī)的CPU、內(nèi)存、存儲(chǔ)進(jìn)行量化,根據(jù)用戶的需求和當(dāng)前物理服務(wù)器的負(fù)載狀態(tài),采用多目標(biāo)粒子群優(yōu)化算法根據(jù)物理服務(wù)器資源利用率、虛擬機(jī)遷移次數(shù)這兩個(gè)目標(biāo)進(jìn)行虛擬機(jī)的優(yōu)化部署。通過仿真實(shí)驗(yàn)結(jié)果表明,該算法在最少的虛擬機(jī)遷移次數(shù)下能有效的提高資源利用率。
[Abstract]:The emergence of cloud computing has changed the traditional mode of computing resource delivery, which is the focus of current research.Due to the characteristics of on-demand, pay-per-use and dynamic scalability of cloud computing, there are still many challenges in cloud computing research, especially the allocation, deployment, migration and integration of physical servers.The allocation and deployment of virtual machine resources are two core issues in cloud computing research.Traditional researches on virtual machine resource allocation and deployment are based on unilateral considerations, ignoring some parameters concerned by users and cloud service providers.Therefore, it has important academic significance and application value to study how to allocate virtual machine resources in cloud computing market and how to deploy virtual machine in data center.Aiming at the allocation of virtual machine resources, this paper takes cloud computing service providers in the cloud computing market as the research object, and introduces the evolutionary game theory in economics to model and analyze the allocation of virtual machine resources in cloud computing.In the whole cloud computing market, the price of virtual machine resources released by cloud computing service providers and the quality of service as a game strategy.In the process of evolution game between the price and service quality released by cloud service provider cloud computing service provider dynamically adjusts its own game strategy in order to improve its utility.Finally, it is proved theoretically and experimentally that the whole virtual machine resource allocation process can achieve evolutionary stability.Aiming at the problem of virtual machine resource deployment, this paper takes the data center of cloud computing service provider as the research object and the particle swarm optimization algorithm as the theoretical guidance to model and analyze the deployment of virtual machine resources in the data center.The CPU, memory and storage of each physical machine and virtual machine are quantified. According to the demand of the user and the load state of the current physical server, the multi-objective particle swarm optimization algorithm is adopted according to the resource utilization of the physical server.The two targets of virtual machine migration are optimized deployment of virtual machine.The simulation results show that the algorithm can effectively improve the resource utilization under the minimum number of virtual machine migration.
【學(xué)位授予單位】:云南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TP302;O225
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 余一嬌;金海;;對(duì)等網(wǎng)絡(luò)中的搭便車行為分析與抑制機(jī)制綜述[J];計(jì)算機(jī)學(xué)報(bào);2008年01期
2 李強(qiáng);郝沁汾;肖利民;李舟軍;;云計(jì)算中虛擬機(jī)放置的自適應(yīng)管理與多目標(biāo)優(yōu)化[J];計(jì)算機(jī)學(xué)報(bào);2011年12期
,本文編號(hào):1701391
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1701391.html
最近更新
教材專著