面向節(jié)能的云計(jì)算任務(wù)調(diào)度策略研究
本文選題:綠色計(jì)算 切入點(diǎn):云計(jì)算 出處:《哈爾濱工業(yè)大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著信息技術(shù)的高速發(fā)展,信息技術(shù)行業(yè)所帶來的能量消耗也成為人們十分關(guān)注的問題之一。隨著云計(jì)算的發(fā)展逐漸成熟,相關(guān)的應(yīng)用正在逐年增加,由于云計(jì)算數(shù)據(jù)中心服務(wù)器及其配套設(shè)備規(guī)模的高速增長,快速攀升的能耗已成為影響企業(yè)利潤的重要因素,研究如何對(duì)數(shù)據(jù)中心的資源和任務(wù)進(jìn)行優(yōu)化管理,以降低能耗、減少污染對(duì)企業(yè)和環(huán)境保護(hù)都有著重要的意義。 云計(jì)算數(shù)據(jù)中心通常包含一個(gè)服務(wù)器機(jī)群,這些服務(wù)器同時(shí)運(yùn)行大量的應(yīng)用程序,這種情況就可以對(duì)數(shù)據(jù)中心的應(yīng)用負(fù)載進(jìn)行整合,用較小數(shù)量的服務(wù)器運(yùn)行任務(wù),使服務(wù)器的各項(xiàng)資源都能得到充分的利用的同時(shí)又不會(huì)出現(xiàn)資源爭用的情況,從而達(dá)到降低成本,節(jié)約能耗的目的,這就是本文所要研究的內(nèi)容。 由于不同任務(wù)對(duì)CPU、內(nèi)存等各種計(jì)算資源的需求量不同,為了使數(shù)據(jù)中心服務(wù)器各項(xiàng)資源得到充分利用,首先需要對(duì)任務(wù)對(duì)不同計(jì)算資源的需求量進(jìn)行預(yù)測(cè),針對(duì)這一問題,本文首先提出了基于神經(jīng)網(wǎng)絡(luò)的程序資源消耗預(yù)測(cè)模型,使用這一預(yù)測(cè)模型對(duì)云計(jì)算任務(wù)各項(xiàng)計(jì)算資源消耗進(jìn)行預(yù)測(cè),該模型以影響程序運(yùn)行資源消耗的各項(xiàng)因素作為神經(jīng)網(wǎng)絡(luò)輸入,以程序運(yùn)行所消耗的時(shí)間、CPU利用率、內(nèi)存使用量、硬盤使用量作為網(wǎng)絡(luò)輸出,,收集程序運(yùn)行的歷史數(shù)據(jù)作為神經(jīng)網(wǎng)絡(luò)的訓(xùn)練和測(cè)試樣本,實(shí)現(xiàn)對(duì)程序性能及資源使用的預(yù)測(cè)。 根據(jù)云計(jì)算任務(wù)各項(xiàng)資源消耗量的預(yù)測(cè)結(jié)果,對(duì)數(shù)據(jù)中心的任務(wù)和服務(wù)器各項(xiàng)資源進(jìn)行整合,優(yōu)化任務(wù)調(diào)度方案。為了減少運(yùn)行主機(jī)并使其各項(xiàng)硬件資源得到充分的利用,同時(shí)又能夠避免資源爭用的情況出現(xiàn),本文將任務(wù)分配問題轉(zhuǎn)化為一個(gè)多維多背包問題進(jìn)行求解,由于任務(wù)分配問題是一個(gè)NP完全問題,本文設(shè)計(jì)采用混合遺傳算法對(duì)該問題求解,以能耗最小作為目標(biāo)函數(shù),求得任務(wù)分配問題最低能耗的優(yōu)化解,從而實(shí)現(xiàn)降低能耗,節(jié)約成本的目的。
[Abstract]:With the rapid development of information technology, the energy consumption brought by the information technology industry has become one of the problems that people pay close attention to. With the development of cloud computing, the related applications are increasing year by year. Due to the rapid growth of cloud computing data center servers and their supporting equipment scale, the rapidly rising energy consumption has become an important factor affecting the profits of enterprises. This paper studies how to optimize the management of data center resources and tasks in order to reduce energy consumption. Reducing pollution is of great significance to enterprises and environmental protection. Cloud computing data centers typically contain a cluster of servers that run a large number of applications at the same time, so that the application load of the data center can be consolidated to run tasks with a smaller number of servers. So that all the resources of the server can be fully utilized without the situation of resource contention, so as to achieve the purpose of reducing cost and saving energy consumption, this is the content of this paper. Because different tasks require different computing resources, such as CPU, memory and so on, in order to make full use of the resources of the data center server, it is necessary to forecast the demand of different computing resources for different tasks, aiming at this problem. In this paper, a program resource consumption prediction model based on neural network is proposed, which is used to predict the computing resource consumption of cloud computing tasks. In this model, the factors that affect the consumption of running resources are taken as the input of neural network, and the CPU utilization, memory usage and hard disk usage are used as the network output. The historical data of program running are collected as training and test samples of neural network to predict program performance and resource usage. According to the forecast results of resource consumption of cloud computing task, the task of data center and the resource of server are integrated, and the task scheduling scheme is optimized. In order to reduce the running host and make full use of its hardware resources, At the same time, the problem of resource contention can be avoided. In this paper, the task assignment problem is transformed into a multi-dimensional multi-knapsack problem, because the task assignment problem is a NP-complete problem. In this paper, a hybrid genetic algorithm is used to solve the problem. With the minimum energy consumption as the objective function, the optimal solution of the minimum energy consumption of the task assignment problem is obtained, so as to reduce the energy consumption and save the cost.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP308;TP301.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 譚一鳴;曾國蓀;;基于神經(jīng)網(wǎng)絡(luò)的獨(dú)立程序在單機(jī)上運(yùn)行功耗的預(yù)測(cè)[J];計(jì)算機(jī)科學(xué);2012年05期
2 劉鵬程;陳榕;;面向云計(jì)算的虛擬機(jī)動(dòng)態(tài)遷移框架[J];計(jì)算機(jī)工程;2010年05期
3 郭兵;沈艷;邵子立;;綠色計(jì)算的重定義與若干探討[J];計(jì)算機(jī)學(xué)報(bào);2009年12期
4 陳全;鄧倩妮;;云計(jì)算及其關(guān)鍵技術(shù)[J];計(jì)算機(jī)應(yīng)用;2009年09期
5 李建鋒;彭艦;;云計(jì)算環(huán)境下基于改進(jìn)遺傳算法的任務(wù)調(diào)度算法[J];計(jì)算機(jī)應(yīng)用;2011年01期
6 徐驍勇;潘郁;凌晨;;云計(jì)算環(huán)境下資源的節(jié)能調(diào)度[J];計(jì)算機(jī)應(yīng)用;2012年07期
7 王永貴;張偉;韓瑞蓮;;云環(huán)境下綠色任務(wù)調(diào)度策略[J];計(jì)算機(jī)工程與應(yīng)用;2012年34期
8 黃建科;周云;;基于自適應(yīng)DVFS的SoC低功耗技術(shù)研究[J];現(xiàn)代電子技術(shù);2009年07期
本文編號(hào):1584756
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1584756.html