移動平臺游戲應用功耗優(yōu)化
發(fā)布時間:2018-03-07 13:47
本文選題:游戲狀態(tài) 切入點:功耗優(yōu)化 出處:《中國科學技術(shù)大學》2017年碩士論文 論文類型:學位論文
【摘要】:目前,低功耗已經(jīng)成為計算機體系結(jié)構(gòu)的重要研究主題。特別是在移動平臺上,功耗問題已經(jīng)成為制約移動平臺發(fā)展的瓶頸。游戲應用占據(jù)移動應用超過50%的下載量,且由于其交互密集特性或計算密集特性或圖形密集特性,往往比其他應用更耗功耗。為了更加有效的在游戲場景下降低移動平臺的功耗,學術(shù)界提出了不少針對游戲應用的功耗優(yōu)化研究,但其中針對交互特性的研究非常有限。本文從游戲應用的特點出發(fā),結(jié)合游戲應用需要與用戶進行交互這一特點,引入了游戲狀態(tài)這一信息來指導移動平臺下不同物理部件的功耗優(yōu)化。同時,由于目前針對移動平臺的相關(guān)基準程序沒有體現(xiàn)用戶交互,因此,本文引入用戶交互,提出了一個游戲?qū)S玫幕鶞食绦。論文的主要工作包?1.根據(jù)游戲程序執(zhí)行的不同階段具有不同的用戶交互特性以及不同的用戶體驗和性能需求,定義了不同的游戲狀態(tài)。為了能夠在線的檢測閉源游戲的不同游戲狀態(tài),提出和實現(xiàn)了基于特征和基于分類算法的兩種游戲狀態(tài)檢測方法,并比對了它們的準確率和開銷。2.提出了基于幀率自調(diào)節(jié)的CPU功耗管理算法。不同游戲和不同游戲狀態(tài)具有不同的性能需求。該算法實時檢測游戲的幀率需求,動態(tài)調(diào)整CPU頻率,實現(xiàn)高效的CPU功耗管理。3.提出了基于游戲狀態(tài)的動態(tài)背光調(diào)整策略。目前游戲過程中屏幕亮度采用靜態(tài)背光值,而實際上不同游戲狀態(tài)下用戶有不同的性能需求。該策略通過權(quán)衡背光變化對用戶體驗的影響和背光變化對屏幕功耗的影響,在不影響用戶體驗的情況下,盡量的降低屏幕功耗。4.提出了基于用戶交互特征的測試基準程序PUBench。基于本文提出的移動平臺要素剖析框架FPA(Factors Profiling Architecture),PUBench以排隊論為基礎(chǔ)模擬用戶交互行為,并對APP-OS交互和CPU-GPU交互進行量化分析。實驗表明,PUBench很好地展現(xiàn)了移動平臺的人機交互、負載和功耗管理特征,消除了"測試者依賴性"。最后,給出PUBench的一個使用案例。
[Abstract]:At present, the low power consumption has become an important research topic in computer architecture. Especially in the mobile platform, the problem of power consumption has become a bottleneck restricting the development of mobile platforms. The game application downloads occupy more than 50% of mobile applications, and because of its interaction characteristics or properties or intensive computing intensive graphics intensive characteristics, often more than other power consumption application. In order to more effectively reduce the power consumption of mobile platform in the game scene, the academic circles have put forward many applications for game power optimization research, but the research on the characteristics of the interactions is very limited. In this paper, from the characteristics of the game application of game applications need to interact with the user and the characteristics, the introduction of this information the game state to guide the power optimization of different physical components of the mobile platform. At the same time, as the benchmark for the mobile platform has no body The user interaction, therefore, this paper introduces user interaction, proposed a game dedicated benchmark program. The main work includes: 1. according to the different stages of the game program has different characteristics and different user interactive user experience and performance requirements, define a different game state. In order to detect online closed source different game game state, is proposed and realized based on the characteristics and two kinds of game state detection method based on classification algorithm, and compare their accuracy and overhead.2. proposed CPU power consumption management frame rate self regulating algorithm based on different games and different games have different performance requirements. The algorithm of real-time detection of the game the rate of demand, adjust CPU frequency, to achieve efficient CPU power management.3. proposed a dynamic backlight adjustment strategy based on the state of the game. The course of the game screen Screen brightness backlight using static value, but in fact different game state users have different performance requirements. This strategy by weighing the change on the screen backlight power consumption affects the user experience and the backlight changes, without affecting the user experience, try to reduce the power consumption of the.4. screen based on interactive feature test the benchmark PUBench. mobile platform elements based on the analysis framework of FPA (Factors Profiling Architecture), PUBench based on the queuing theory simulation of user interaction, and the APP-OS interaction and CPU-GPU interaction for quantitative analysis. Experimental results show that the PUBench is very good to show the mobile platform for human-computer interaction, load and power management features, eliminate "the test of dependence. Finally, a case of PUBench is given.
【學位授予單位】:中國科學技術(shù)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP332
【參考文獻】
相關(guān)期刊論文 前1條
1 高策;孫貝磊;周學海;李曦;;Cocos2d-x游戲引擎的GPU功耗優(yōu)化策略[J];小型微型計算機系統(tǒng);2016年05期
相關(guān)碩士學位論文 前1條
1 劉騰福;Android平臺基于任務重要性的功耗管理策略研究[D];中國科學技術(shù)大學;2014年
,本文編號:1579545
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1579545.html
最近更新
教材專著