云環(huán)境下多約束動態(tài)虛擬資源管理研究
本文關鍵詞: 云計算 資源管理 應用可用性 資源整合 資源安置 出處:《上海交通大學》2013年碩士論文 論文類型:學位論文
【摘要】:本文旨在研究云計算環(huán)境中多約束情況下的虛擬資源調度管理問題。多約束一方面是指來自用戶的質量屬性約束,比如對響應時間和吞吐量等性能要求和對部署在云平臺上應用的可用性要求。這些用戶約束是以SLA的形式,由用戶向云服務提供商提出的。另一方面,多約束是指來自云服務提供商的約束,主要是指減少包括能源開銷在內的運營成本的約束。在運行和維護云平臺時,云服務提供商總是力求減少能耗來降低成本,提高利潤。云平臺中資源的供給和部署需要在滿足用戶約束和降低云服務提供商的運營成本之間進行平衡。為云用戶提供更多的虛擬資源可以確保云應用的性能和可用性等需求得到滿足,但是會增加云服務提供商的運營成本;反之,如果為云用戶提供較少的虛擬資源,盡管可以有效減低云服務提供商的運營成本,但是可能會導致云應用響應時間過長和可用性過低等情況。因此,如何提供、安置和整合云平臺上的虛擬資源滿足不同利益共享者的約束成為了云服務用戶和云服務提供商兩方面共同關注的話題。 因而,本文提出了一種約束分離的云資源管理框架——通過分離云應用和云服務提供商不同的需求關注點,在不同層次上滿足他們各自的需求。我們將云資源的管理分為應用層和平臺層上的資源管理。其中,質量屬性需求到虛擬資源的映射被抽象成應用控制器。在應用控制器中,用戶對性能屬性的要求被轉化為虛擬資源的數(shù)量,將可用性需求轉化為虛擬資源位置的部署方案。在平臺層的管理框架中,采用整合策略,使得虛擬資源盡可能地運行在較少的物理服務器上,以達到減少運行的物理機數(shù)量從而節(jié)約能源和成本的目的。 在應用層的資源管理模塊中,,本文提出了一種計算部署在云平臺上的應用可用性的計算模型,以及一種動態(tài)虛擬資源安置算法。它們在最大程度上滿足了用戶的應用可用性需求,同時也減少了分散部署虛擬資源帶來的通訊開銷。資源安置算法綜合使用了兩種伸縮策略:水平伸縮和垂直伸縮。垂直伸縮策略是指改變虛擬機內部持有的資源數(shù)量,而水平伸縮策略是指改變虛擬機實例的數(shù)量。由于這兩種策略對應用可用性、通訊開銷和軟件版本開銷的影響不盡相同,我們根據(jù)應用當前的可用性和用戶約束中規(guī)定的可用性的差值來選擇執(zhí)行哪種策略。 在平臺層的資源管理模塊中,本文也給出了一種改進的資源整合方案。該方案將資源的整合分為反應式資源整合模塊和周期性資源整合模塊。反應式資源整合模塊自治地運行在每一臺物理服務器內部,根據(jù)監(jiān)測是否有異常情況,決定是否進行資源整合。異常情況包括超過預定資源利用率上限的負載過度情況,和低于預定資源利用率下限的負載不足情況。針對這兩種情況本文給出了不同的算法來制定資源整合方案。周期性資源整合模塊,作為反應式資源整合的補充,周期性地在可用性區(qū)域內進行所有虛擬資源的整合。 最后為了驗證這兩種策略—可用性感知的動態(tài)資源安置模塊和資源整合模塊的正確性和有效性,本文模擬真實云環(huán)境的架構,設計并實現(xiàn)了兩個實驗。在實驗一中通過模擬兩種典型場景——擴容和減容的應用,對比了水平伸縮策略、垂直伸縮策略和本文提出的可用性感知策略在可用性滿足率、平均應用可用性、通訊開銷和軟件版本開銷上的表現(xiàn)。實驗二通過模擬一個可用性區(qū)域中多臺物理服務器和多臺多種粒度的虛擬機,來驗證改進的資源整合方案的有效性。實驗結果表明,本文中提出的算法減少了整合活動帶來的遷移成本,是一個實際具有應用價值的有效策略。 本文的主要貢獻在于從不同利益共享者的角度對多約束資源管理框架的構建進行了初步的探索。將來自不同利益共享者的約束分離開來,在不同層次上予以滿足。其中,重點關注了應用層上的可用性約束的滿足和云平臺層上的節(jié)能約束的滿足,從而達到云資源使用者和云資源管理者共贏的目的。
[Abstract]:Virtual resource scheduling management problems, this paper aims to study the cloud computing environment with multiple constraints under multiple constraints. One refers to the quality attribute constraints from users, such as response time and throughput performance requirements and deployment of applications on the cloud platform availability requirements. These user constraints are in the form of SLA, proposed by user Xiang Yun service provider. On the other hand, multi constraint refers to from the cloud service provider constraints, mainly refers to reduce energy costs, including operating cost constraints. In the operation and maintenance of the cloud platform, cloud service providers always strive to reduce energy consumption to reduce costs and increase profits. Supply and deployment of resources in the cloud platform the need to balance to meet user constraints and reduce operating costs between cloud service providers. To provide more virtual resources can ensure the performance of cloud applications for cloud users And availability requirements are met, but will increase the cloud service provider operating costs; on the other hand, if the virtual resources provide less for cloud users, although cloud service providers can effectively reduce operating costs, but may lead to a cloud application response time and availability low. Therefore, how to provide, placement and the integration of virtual resources in the cloud to meet the needs of different stakeholders constraints has become a common concern of the two users of cloud services and cloud service providers of the topic.
Therefore, this paper proposes a constraint separation cloud resource management framework, through the separation of cloud applications and cloud service providers to the needs of different concerns, meet their needs at different levels. We will cloud resources into the management of resource management and application layer platform layer. The quality attribute requirements to map virtual resources are abstracted into application controller. In the application of the controller, the user requirements on the performance of property is converted to a virtual number of resources, the availability requirements are mapped into the virtual resource deployment scheme. The position of the platform layer management framework, the integration strategy of the virtual resources as much as possible running on a physical server less, in order to reduce the number of physical machines running so as to save energy and cost.
In resource management module of application layer, this paper presents the calculation model of application availability of a computing deployment in the cloud on the platform, and a dynamic virtual resource placement algorithm. They satisfy the user application usability requirements in the greatest degree, but also reduce the dispersion of the deployment of virtual resources bring communication overhead the integrated use of resources. For algorithm two expansion strategy: horizontal expansion and vertical expansion. The vertical expansion strategy refers to the change of internal resources held by the number of virtual machines, and the horizontal expansion strategy refers to changes in the number of virtual machine instances. By the two strategies of application usability, effects of communication overhead and software version overhead we are not the same, according to the provisions of the current application of usability and user constraints in the availability of the difference to choose what kind of strategy implementation.
In resource management module in the platform layer, an improved resource integration scheme is also given in this paper. The program will be the integration of resources divided into resource integration module and periodic resource integration module. The reactive resource integration module run autonomously on each physical server, according to whether there is abnormal situation monitoring and decide whether the integration of resources. Exceptions include more than the upper limit of the excessive load rate using a predetermined resource, and the shortage of the lower limit of the rate is lower than the load using a predetermined resource. In the light of the two cases presented different algorithms to develop resource integration scheme. The periodic resource integration module, as a complementary of the reactive periodically, the integration of all virtual resources in availability in the region.
Finally in order to verify these two strategies - availability aware dynamic resource placement module and resource integration module is correct and effective, this paper simulates the real cloud environment architecture, design and implementation of the two experiments. Through the simulation of two typical scenarios -- the application of dilatancy and volume reduction in Experiment 1, the level of contrast the expansion strategy, vertical expansion strategy and the availability of knowledge strategy in the availability rate, average application availability, communication overhead and software version overhead on performance. Experiment two through virtual machine simulation of a physical server availability zone and multiple granularities, to verify the effectiveness of resource integration the improved scheme. Experimental results show that the proposed algorithm reduces the cost of migration integration activities, is an effective strategy for the actual application value.
The main contribution of this paper is from different benefit sharing makes a preliminary exploration on the construction of multi constrained resource management framework "perspective. From the separation of the constraints of sharing different interests, to meet the requirements in different levels. Among them, the focus on energy constrained availability constraints on application layer content and cloud platform layer on the meeting, so as to achieve cloud resource users and cloud resource management and win-win goal.
【學位授予單位】:上海交通大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TP3
【共引文獻】
相關期刊論文 前10條
1 葉可江;吳朝暉;姜曉紅;何欽銘;;虛擬化云計算平臺的能耗管理[J];計算機學報;2012年06期
2 劉永;王新華;王朕;隋敬麒;;節(jié)能及信任驅動的虛擬機資源調度[J];計算機應用研究;2012年07期
3 廖彬;于炯;孫華;年梅;;基于存儲結構重配置的分布式存儲系統(tǒng)節(jié)能算法[J];計算機研究與發(fā)展;2013年01期
4 廖彬;于炯;張?zhí)?楊興耀;;基于分布式文件系統(tǒng)HDFS的節(jié)能算法[J];計算機學報;2013年05期
5 曾凱;佘X;敬思遠;;云環(huán)境下基于功耗感知的虛擬機博弈遷移算法[J];計算機應用研究;2013年06期
6 王加昌;曾輝;何騰蛟;張娜;;面向數(shù)據(jù)中心的虛擬機部署及優(yōu)化算法[J];計算機應用;2013年10期
7 Claudia Canali;Riccardo Lancellotti;;Improving Scalability of Cloud Monitoring Through PCA-Based Clustering of Virtual Machines[J];Journal of Computer Science & Technology;2014年01期
8 錢育蓉;于炯;王衛(wèi)源;孫華;廖彬;楊興耀;;云計算環(huán)境下軟硬件節(jié)能和負載均衡策略[J];計算機應用;2013年12期
9 李小六;張曦煌;;虛擬化云計算數(shù)據(jù)中心能量感知資源分配機制[J];計算機應用;2013年12期
10 鄧罡;龔正虎;王宏;;現(xiàn)代數(shù)據(jù)中心網絡特征研究[J];計算機研究與發(fā)展;2014年02期
相關博士學位論文 前4條
1 胡晗;大規(guī)模網絡服務系統(tǒng)能耗控制與性能優(yōu)化[D];中國科學技術大學;2012年
2 張小慶;基于云計算環(huán)境的資源提供優(yōu)化方法研究[D];武漢理工大學;2013年
3 劉志飄;成本感知的云服務虛擬資源供應機制研究[D];北京郵電大學;2013年
4 敬思遠;面向綠色虛擬數(shù)據(jù)中心資源管理的若干關鍵技術研究[D];電子科技大學;2013年
相關碩士學位論文 前10條
1 湯慧明;面向任務調度的集群功耗管理[D];國防科學技術大學;2010年
2 劉永;云計算環(huán)境下虛擬機資源調度策略研究[D];山東師范大學;2012年
3 陳靜怡;云環(huán)境下基于內存共享的服務器整合算法研究[D];復旦大學;2012年
4 謝文靜;云計算環(huán)境下虛擬機資源分配優(yōu)化方法研究[D];湖南大學;2011年
5 訾晨楊;虛擬化數(shù)據(jù)中心能耗管理自適應系統(tǒng)的設計[D];上海交通大學;2013年
6 劉培松;云計算環(huán)境下任務調度和資源分配策略的研究[D];華東師范大學;2013年
7 張飛飛;云環(huán)境中基于Map/Reduce的虛擬機調度策略研究[D];西安電子科技大學;2013年
8 彭近堯;基于能效的數(shù)據(jù)中心資源整合機制[D];電子科技大學;2013年
9 武靜;云計算平臺調度管理技術研究與實現(xiàn)[D];電子科技大學;2013年
10 馬艾田;基于云計算的有限元分析仿真系統(tǒng)研究與實現(xiàn)[D];北京工業(yè)大學;2013年
本文編號:1480018
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1480018.html