抗輻射加固SRAM設(shè)計(jì)
發(fā)布時(shí)間:2018-01-21 14:30
本文關(guān)鍵詞: 抗輻射加固 靜態(tài)隨機(jī)存儲(chǔ)器 單粒子翻轉(zhuǎn) 單粒子閂鎖 糾檢錯(cuò)碼 出處:《西安電子科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著集成電路的高速發(fā)展,存儲(chǔ)器占據(jù)越來越重要的地位。其中,靜態(tài)隨機(jī)存儲(chǔ)器(SRAM)因其速度快、功耗低已被廣泛應(yīng)用于各種高速存儲(chǔ)器中。同時(shí),SRAM在各類航天器件的電路系統(tǒng)中也有著更為廣泛的應(yīng)用。在空間輻射環(huán)境中,SRAM會(huì)嚴(yán)重受到單粒子翻轉(zhuǎn)效應(yīng)、單粒子閂鎖效應(yīng)、總劑量效應(yīng)等的影響。因此,航天用到的SRAM不僅要保證其本身的特性,還應(yīng)該具備更好的抗輻射性能。本課題源于航天某項(xiàng)目,對(duì)其中所需SRAM,進(jìn)行了抗輻射加固性能的設(shè)計(jì)。SRAM中最重要的部分是存儲(chǔ)單元,首先對(duì)標(biāo)準(zhǔn)6管SRAM存儲(chǔ)單元的性能和多種具有抗輻射性能的存儲(chǔ)單元電路設(shè)計(jì)進(jìn)行了分析,設(shè)計(jì)出能夠符合項(xiàng)目指標(biāo)要求,且具有抗輻射性能的SRAM存儲(chǔ)單元。以存儲(chǔ)單元為核心,設(shè)計(jì)具有一定抗輻射性能的外圍電路,構(gòu)成完整的SRAM設(shè)計(jì)。在電路設(shè)計(jì)的基礎(chǔ)上實(shí)現(xiàn)物理版圖。著重版圖的抗輻射加固方法,以提高抗單粒子性能。然后使用star-RCXT提取版圖的^/寄生參數(shù)的網(wǎng)表,和使用Hspice與Spectre兩個(gè)仿真軟件進(jìn)行仿真驗(yàn)證,完成對(duì)SRAM的功能和性能的檢查驗(yàn)證,以此來滿足設(shè)計(jì)指標(biāo)。本文的重點(diǎn)在于兩個(gè)方面。一方面是著重在版圖上對(duì)SRAM進(jìn)行抗輻射加固的設(shè)計(jì)。在版圖中,(1)通過增加阱或襯底接觸的保護(hù)環(huán)、保護(hù)^/;(2)增加阱或襯底接觸上的通孔(CT)孔的數(shù)量;(3)拉大N型金屬氧化物半導(dǎo)體(NMOS)和P型金屬氧化物半導(dǎo)體(PMOS)的距離等多種加固措施加固措施,使SRAM具有很好的抗單粒子效應(yīng)(SEE)的能力。另一方面是設(shè)計(jì)糾檢錯(cuò)碼(EDAC)電路,采用漢明碼的編碼方式,具有糾一檢二的工作方式,能夠具有更好的抗單粒子翻轉(zhuǎn)(SEU)效應(yīng)的能力。而EDAC的版圖是由具有抗輻射性能的單元庫的基本邏輯單元拼接構(gòu)成。本項(xiàng)目是基于中芯國際(SMIC)的130nm工藝,使用candance工具進(jìn)行的設(shè)計(jì)。通過與某商用SRAM相比,較商用的讀寫時(shí)間慢2秒鐘左右。而在抗單粒子效應(yīng)方面,通過單粒子仿真軟件,模擬金(Au)粒子入射存儲(chǔ)單元,得到的結(jié)果顯示無閂鎖效應(yīng)發(fā)生;另外又采用EDAC電路,保證不會(huì)出現(xiàn)由單粒子效應(yīng)引起的一位翻轉(zhuǎn)錯(cuò)誤,具有良好的抗單粒子效應(yīng)的性能。
[Abstract]:With the rapid development of integrated circuits, memory occupies a more and more important position. Among them, static random access memory (SRAM) has been widely used in all kinds of high-speed memory because of its high speed and low power consumption. SRAM is also widely used in the circuit system of various spaceflight devices. In the environment of space radiation, SRAM will be seriously affected by single particle flip effect and single particle latch effect. Therefore, the SRAM used in aerospace should not only guarantee its own characteristics, but also have better radiation resistance. The most important part of SRAM is memory cell. Firstly, the performance of the standard 6-tube SRAM memory cell and the design of a variety of memory cell circuits with anti-radiation performance are analyzed, and the design can meet the requirements of the project. The SRAM memory cell with anti-radiation performance is designed with the memory cell as the core, and the peripheral circuit with certain anti-radiation performance is designed. Form a complete SRAM design. Based on the circuit design to achieve physical layout, focusing on the layout of anti-radiation reinforcement method. In order to improve the anti-single particle performance, star-RCXT is used to extract the net table of ^ / parasitic parameters of the layout, and two simulation software, Hspice and Spectre, are used for simulation verification. Check and verify the function and performance of SRAM. This paper focuses on two aspects. On the one hand, it focuses on the design of anti-radiation reinforcement of SRAM on the layout. (1) protect ^ / R by increasing the trap or substrate contact protection ring; (2) increasing the number of CTs on a well or substrate contact; Strengthening measures such as enlarging the distance between N type metal oxide semiconductor (NMOS) and P type metal oxide semiconductor (PMOS). The SRAM has the ability to resist single particle effect (SEE). On the other hand, it designs the error-correcting code (EDAC) circuit, which adopts the hamming code coding method and has the operation mode of correcting one and checking two. The layout of EDAC is composed of basic logical unit splicing of unit library with radiation resistance. This project is based on SMIC (SMIC). The 130nm process of SMICs. Design using candance tools. Compared with a commercial SRAM, the reading and writing time is about 2 seconds slower than that of commercial SRAM. In the aspect of anti-single particle effect, the software of single particle simulation is used. The simulated au) particles incident into the memory cell and the results show that there is no latch effect. In addition, EDAC circuit is used to guarantee that there will not be a bit flip error caused by single particle effect, so it has good performance against single particle effect.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TP333
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 衛(wèi)寧;王劍峰;杜婕;周聰莉;郭旗;文林;;抗輻射加固封裝國產(chǎn)存儲(chǔ)器的電子輻照試驗(yàn)[J];信息與電子工程;2010年01期
,本文編號(hào):1451733
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1451733.html
最近更新
教材專著