面向公有云存儲(chǔ)的高并發(fā)關(guān)鍵技術(shù)研究及系統(tǒng)實(shí)現(xiàn)
本文關(guān)鍵詞:面向公有云存儲(chǔ)的高并發(fā)關(guān)鍵技術(shù)研究及系統(tǒng)實(shí)現(xiàn) 出處:《華南理工大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 公有云存儲(chǔ) OpenStack Swift 負(fù)載均衡 反向代理緩存
【摘要】:近年來云存儲(chǔ)服務(wù)已逐漸成熟,許多企業(yè)和用戶選擇將數(shù)據(jù)存儲(chǔ)在云上,其中面向互聯(lián)網(wǎng)的云存儲(chǔ)被稱為公有云存儲(chǔ)。公有云存儲(chǔ)系統(tǒng)不僅要適應(yīng)海量業(yè)務(wù)數(shù)據(jù)存儲(chǔ)的增長,還要具備大規(guī)模、高并發(fā)處理訪問的能力,以快速響應(yīng)用戶的大量請求。因此,如何有效提高公有云存儲(chǔ)系統(tǒng)的并發(fā)處理能力是當(dāng)前云存儲(chǔ)服務(wù)領(lǐng)域的項(xiàng)研究重點(diǎn),具有重要的實(shí)際意義。 首先,本文介紹了兩項(xiàng)能夠提供并發(fā)能力的關(guān)鍵技術(shù):負(fù)載均衡和反向代理緩存。以LVS為例深入研究負(fù)載均衡常用的算法和工作模式,,并簡要地研究了反向代理緩存的實(shí)現(xiàn)原理。 其次,深入分析研究OpenStack的對象存儲(chǔ)Swift項(xiàng)目,建立了個(gè)基于負(fù)載均衡的多節(jié)點(diǎn)公有云存儲(chǔ)模型,通過水平擴(kuò)展代理節(jié)點(diǎn)數(shù)量即可線性提高系統(tǒng)的并發(fā)性能;同時(shí),考慮到系統(tǒng)中存在高頻訪問的熱點(diǎn)存儲(chǔ)對象,文章還提出了個(gè)基于熱點(diǎn)緩存的公有云存儲(chǔ)模型,將訪問熱點(diǎn)的請求轉(zhuǎn)發(fā)到反向代理緩存,從而降低了對存儲(chǔ)幾點(diǎn)的訪問內(nèi)壓力,提高系統(tǒng)響應(yīng)速度。 然后,提出基于負(fù)載均衡的熱點(diǎn)緩存公有云存儲(chǔ)模型的高并發(fā)公有云存儲(chǔ)系統(tǒng)框架,并詳細(xì)設(shè)計(jì)出各個(gè)功能模塊組成及其具體實(shí)現(xiàn)方法。其中,對原有Proxy Server加入了熱點(diǎn)存儲(chǔ)對象判斷的功能改進(jìn),使得公有云存儲(chǔ)系統(tǒng)能自動(dòng)識別出獲取熱點(diǎn)存儲(chǔ)對象的請求并將其轉(zhuǎn)發(fā)交由緩存處理。 經(jīng)測試實(shí)驗(yàn)證明,本文提出的高并發(fā)公有云存儲(chǔ)系統(tǒng),在多用戶訪問場景下隨著模擬并發(fā)數(shù)的增大,其并發(fā)處理能力呈線性上升趨勢增長;而在模擬熱點(diǎn)存儲(chǔ)對象訪問場景中,其TPS(Throughout Per Second)比單代理節(jié)點(diǎn)的公有云存儲(chǔ)系統(tǒng)提升了8.48%,比多代理節(jié)點(diǎn)的公有云存儲(chǔ)系統(tǒng)提升了4.29%。綜上,基于提議模型搭建的原型系統(tǒng)切實(shí)有效地提高了公有云存儲(chǔ)服務(wù)的并發(fā)性能。
[Abstract]:In recent years, cloud storage services have gradually matured, many enterprises and users choose to store data on the cloud. Internet oriented cloud storage is called public cloud storage. Public cloud storage system should not only adapt to the growth of massive business data storage, but also have the ability of large scale and high concurrent processing access. Therefore, how to effectively improve the concurrency processing capability of public cloud storage system is the focus of current cloud storage service research, and has important practical significance. First of all, this paper introduces two key technologies that can provide concurrent capability: load balancing and reverse proxy caching. Taking LVS as an example, the common algorithms and working modes of load balancing are studied in depth. The implementation principle of reverse proxy cache is briefly studied. Secondly, a multi-node public cloud storage model based on load balancing is established by deeply analyzing the object storage Swift project of OpenStack. The concurrency performance of the system can be improved linearly by horizontal expansion of the number of proxy nodes. At the same time, considering the existence of hot storage objects with high frequency access in the system, a public cloud storage model based on hot spot cache is proposed, which forwards requests for access to hot spots to reverse proxy cache. Thus, the internal pressure of access to several points of storage is reduced and the system response speed is improved. Then, a high concurrent public cloud storage system framework based on load balancing model of hot cache public cloud storage is proposed, and the composition of each function module and its specific implementation method are designed in detail. The original Proxy Server is improved by adding the function of judging the hot storage object. The public cloud storage system can automatically identify requests for hot storage objects and forward them to the cache. The test results show that the concurrency processing ability of the high concurrent public cloud storage system increases linearly with the increase of the number of simulation concurrency in the multi-user access scenario. In the simulated hot storage object access scenario, its TPS(Throughout Per second is 8.48% higher than the public cloud storage system of a single proxy node. Compared with the public cloud storage system with multi-agent nodes, the proposed prototype system improves the concurrent performance of public cloud storage service effectively and effectively.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP333
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋平,孫建伶,何志均;基于Quorum系統(tǒng)容錯(cuò)技術(shù)綜述[J];計(jì)算機(jī)研究與發(fā)展;2004年04期
2 王晉鵬,潘龍法,李降龍;LVS集群中的動(dòng)態(tài)反饋調(diào)度算法[J];計(jì)算機(jī)工程;2005年19期
3 石磊;葉海琴;衛(wèi)琳;連衛(wèi)民;;Web緩存命中率與字節(jié)命中率關(guān)系[J];計(jì)算機(jī)工程;2007年13期
4 劉斌;徐精明;代素環(huán);葛華;;基于Linux虛擬服務(wù)器的負(fù)載均衡算法[J];計(jì)算機(jī)工程;2011年23期
5 謝茂濤;宋中山;;LVS集群系統(tǒng)負(fù)載均衡策略的研究[J];計(jì)算機(jī)工程與科學(xué);2006年08期
6 聶正學(xué),郭成城,晏蒲柳;Linux集群服務(wù)器中請求轉(zhuǎn)發(fā)策略探討與實(shí)現(xiàn)[J];計(jì)算機(jī)應(yīng)用研究;2005年05期
7 周敬利;周正達(dá);;改進(jìn)的云存儲(chǔ)系統(tǒng)數(shù)據(jù)分布策略[J];計(jì)算機(jī)應(yīng)用;2012年02期
8 鄧鵬;李枚毅;何誠;;Namenode單點(diǎn)故障解決方案研究[J];計(jì)算機(jī)工程;2012年21期
9 鄭靈翔,劉君堯,陳輝煌;Linux下的負(fù)載均衡集群LVS實(shí)現(xiàn)分析與測試[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年06期
10 皮燦軍;李和香;;基于Internet的反向代理緩存技術(shù)的研究[J];中小企業(yè)管理與科技(下旬刊);2013年04期
相關(guān)博士學(xué)位論文 前1條
1 吳晨濤;對象存儲(chǔ)系統(tǒng)中熱點(diǎn)數(shù)據(jù)的研究[D];華中科技大學(xué);2010年
本文編號:1438118
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1438118.html