Research on LaMnO 3 Perovskite and LaMnO 3 /Graphene Nanocom
發(fā)布時(shí)間:2024-03-08 04:13
高性能電化學(xué)能量存儲器件(高能量密度、功率密度和循環(huán)壽命)在能源領(lǐng)域具有廣泛應(yīng)用。其中,混合型電池-超級電容器(HBSD)作為一種新型的儲能器件,結(jié)合了高能量密度的電池型電極和高功率密度的電容器型電極,具有高電化學(xué)性能、高安全性、低成本和環(huán)保等諸多優(yōu)勢,在電動汽車、智能電網(wǎng)、電子設(shè)備等領(lǐng)域中具有巨大的應(yīng)用潛力。鈣鈦礦型氧化物L(fēng)aMnO3(LMO)被證實(shí)能夠容納大量的氧離子和其他陽離子空位,從而顯著增加電荷存儲能力,是一種有效的儲能材料。然而,由于LMO固有的低離子/電子導(dǎo)電性,導(dǎo)致低倍率、容量快速衰減和低循環(huán)穩(wěn)定性等問題。因此,開發(fā)具有高能量/功率密度,以及循環(huán)穩(wěn)定的LMO材料仍是一個(gè)重大挑戰(zhàn)。另一方面,還原氧化石墨烯(rGO)由于高電導(dǎo)率和大比表面積,作為HBSD的電容器型電極材料得到廣泛研究。本文設(shè)計(jì)并開發(fā)了一種新型的混合電池-超級電容器裝置,其中rGO作為電容器型電極,LMO復(fù)合材料作為電池型電極。在構(gòu)建混合裝置之前,對電容器電極和電池電極的性能也進(jìn)行了如下優(yōu)化:對于電容型電極(rGO),使用肼(H-rGO)和氨(U-rGO)對rGO分別進(jìn)行還原。電化學(xué)測試...
【文章頁數(shù)】:127 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
ABSTRACT
CHAPTER1 Introduction
1.1 Overview
1.2 Electrode materials for HBSD
1.2.1 Supercapacitor and its electrode materials
1.2.2 Electrical Double Layer capacitor EDLC
(1)Working principle
(2)Typical electrode materials for EDLC
1.2.3 Pseudocapacitance
(1)Working principle
(2)Typical electrode materials for pseudocapacitor
1.3 Battery electrode materials
(1)Working principle
(2)Typical electrode materials for battery
1.4 Electrochemical characteristics of supercapacitor and battery electrodes
1.5 Graphene
1.5.1 Brief introduction
1.5.2 Synthesis of graphene
1.6 LaMnO3 perovskite oxide
1.6.1 Perovskite oxides
1.6.2 LaMnO3 perovskite oxide as energy storage materials
1.6.3 Synthesis of LaMnO3 perovskite
1.7 Challenges and proposed approaches
1.7.1 Optimization of LMO synthesis parameters
1.7.2 Modulation of the charging mechanisms of LMO
1.7.3 Structural design by compositing with graphene
1.8 Objective
CHAPTER2 Synthesis of reduced graphene oxide as a capacitor electrode
2.1 Introduction
2.2 Experimental
2.2.1 Preparation of graphene oxide GO
2.2.2 Preparation of reduced graphene oxide
2.2.3 Electrochemical characterization
2.3 Results and discussion
2.3.1 XRD and surface area
2.3.2 Morphology
2.3.3 Electrochemical properties
2.4 Conclusions
CHAPTER3 Optimization of LaMnO3 perovskite synthesis parameters
3.1 Introduction
3.2 Experimental
3.2.1 Preparation of LMO perovskite
3.2.2 Parameters and their levels used in the Taguchi method
3.2.3 Characterizations
3.2.4 Fabrication of electrodes
3.3 Results and discussion
3.3.1 Formation and structure of LMO perovskite
3.3.2 Electrochemical properties
3.3.3 Analysis by the Taguchi method
3.3.4 Morphology and surface area of the Validation sample
3.3.5 Phase structure and chemical analysis
3.3.6 Electrochemical properties
3.4 Conclusions
CHAPTER4 Three-dimensional nitrogen-doped graphene wrapped LaMnO3 nanocomposites
4.1 Introduction
4.2 Experimental
4.2.1 Preparation of N-rGO
4.2.2 Preparation of LMO/N-rGO composites
4.2.3 Electrochemical characterization
4.3 Results and Discussion
4.3.1 Surface morphology and BET surface area
4.3.2 Phase structure and chemical state analysis
4.3.3 Electrochemical properties
4.4 Conclusions
CHAPTER5 Mn Nonstoichiometric effects on the capacity behavior of LaMnO3 Perovskite
5.1 Introduction
5.2 Experimental Section
5.2.1 Preparation of the perovskite powder
5.2.2 Characterization
5.2.3 Electrodes fabrication and electrochemical measurements
5.3 Results and discussion
5.3.1 Morphology and surface area
5.3.2 Phase structure and chemical analysis
5.3.3 Electrochemical properties
5.4 Conclusions
CHAPTER6 Fabrication of high-performance hybrid battery-supercapacitor device based on Graphene-Encapsulated Nonstoichiometric LaMnO3 Perovskite
6.1 Introduction
6.2 Experimental
6.2.1 Preparation of LM1.1O/rGO nanocomposite
6.2.2 Fabrication of the HBSD device
6.2.3 Electrochemical characterization
6.3 Results and discussion
6.3.1 Surface morphology
6.3.2 Phase structure and BET surface area
6.3.3 Electrochemical properties
6.3.4 Hybrid supercapacitor based on LM1.1O/rGO nanocomposite and rGO
6.4 Conclusions
CHAPTER7 Summary and recommendations
7.1 Summary
7.2 Recommendations for Future Research
APPENDIX A.Taguchi method
1.Overview
2.Taguchi methodology and experiment process
Acknowledgements
List of publications
References
本文編號:3921992
【文章頁數(shù)】:127 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
ABSTRACT
CHAPTER1 Introduction
1.1 Overview
1.2 Electrode materials for HBSD
1.2.1 Supercapacitor and its electrode materials
1.2.2 Electrical Double Layer capacitor EDLC
(1)Working principle
(2)Typical electrode materials for EDLC
1.2.3 Pseudocapacitance
(1)Working principle
(2)Typical electrode materials for pseudocapacitor
1.3 Battery electrode materials
(1)Working principle
(2)Typical electrode materials for battery
1.4 Electrochemical characteristics of supercapacitor and battery electrodes
1.5 Graphene
1.5.1 Brief introduction
1.5.2 Synthesis of graphene
1.6 LaMnO3 perovskite oxide
1.6.1 Perovskite oxides
1.6.2 LaMnO3 perovskite oxide as energy storage materials
1.6.3 Synthesis of LaMnO3 perovskite
1.7 Challenges and proposed approaches
1.7.1 Optimization of LMO synthesis parameters
1.7.2 Modulation of the charging mechanisms of LMO
1.7.3 Structural design by compositing with graphene
1.8 Objective
CHAPTER2 Synthesis of reduced graphene oxide as a capacitor electrode
2.1 Introduction
2.2 Experimental
2.2.1 Preparation of graphene oxide GO
2.2.2 Preparation of reduced graphene oxide
2.2.3 Electrochemical characterization
2.3 Results and discussion
2.3.1 XRD and surface area
2.3.2 Morphology
2.3.3 Electrochemical properties
2.4 Conclusions
CHAPTER3 Optimization of LaMnO3 perovskite synthesis parameters
3.1 Introduction
3.2 Experimental
3.2.1 Preparation of LMO perovskite
3.2.2 Parameters and their levels used in the Taguchi method
3.2.3 Characterizations
3.2.4 Fabrication of electrodes
3.3 Results and discussion
3.3.1 Formation and structure of LMO perovskite
3.3.2 Electrochemical properties
3.3.3 Analysis by the Taguchi method
3.3.4 Morphology and surface area of the Validation sample
3.3.5 Phase structure and chemical analysis
3.3.6 Electrochemical properties
3.4 Conclusions
CHAPTER4 Three-dimensional nitrogen-doped graphene wrapped LaMnO3 nanocomposites
4.1 Introduction
4.2 Experimental
4.2.1 Preparation of N-rGO
4.2.2 Preparation of LMO/N-rGO composites
4.2.3 Electrochemical characterization
4.3 Results and Discussion
4.3.1 Surface morphology and BET surface area
4.3.2 Phase structure and chemical state analysis
4.3.3 Electrochemical properties
4.4 Conclusions
CHAPTER5 Mn Nonstoichiometric effects on the capacity behavior of LaMnO3 Perovskite
5.1 Introduction
5.2 Experimental Section
5.2.1 Preparation of the perovskite powder
5.2.2 Characterization
5.2.3 Electrodes fabrication and electrochemical measurements
5.3 Results and discussion
5.3.1 Morphology and surface area
5.3.2 Phase structure and chemical analysis
5.3.3 Electrochemical properties
5.4 Conclusions
CHAPTER6 Fabrication of high-performance hybrid battery-supercapacitor device based on Graphene-Encapsulated Nonstoichiometric LaMnO3 Perovskite
6.1 Introduction
6.2 Experimental
6.2.1 Preparation of LM1.1O/rGO nanocomposite
6.2.2 Fabrication of the HBSD device
6.2.3 Electrochemical characterization
6.3 Results and discussion
6.3.1 Surface morphology
6.3.2 Phase structure and BET surface area
6.3.3 Electrochemical properties
6.3.4 Hybrid supercapacitor based on LM1.1O/rGO nanocomposite and rGO
6.4 Conclusions
CHAPTER7 Summary and recommendations
7.1 Summary
7.2 Recommendations for Future Research
APPENDIX A.Taguchi method
1.Overview
2.Taguchi methodology and experiment process
Acknowledgements
List of publications
References
本文編號:3921992
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/3921992.html
最近更新
教材專著