Capture of CO 2 by Switchable Solvents to Produce Valuable M
發(fā)布時間:2023-10-26 19:05
基于二氧化碳捕集與封存(CCS)、二氧化碳捕集與利用(CCU)的二氧化碳減排戰(zhàn)略—直是非常有前景的減少溫室氣體排放的技術(shù)。礦物碳酸化是永久儲存二氧化碳的技術(shù)之—同時該技術(shù)也可以生產(chǎn)很多增值材料,如已被證明具有工業(yè)價值的、可用于改進(jìn)現(xiàn)有材料和先進(jìn)材料設(shè)計的產(chǎn)品CaCO3。在控制多晶型物的研究方面,CaCO3顆粒的形態(tài)和尺寸—直是非;馃岬难芯空n題,但CaCO3顆粒的結(jié)晶過程卻是不容易攻克的難關(guān)。在本工作中,我們發(fā)現(xiàn)了—種新的循環(huán)合成方法,通過使用CO2響應(yīng)的可切換的綠色溶劑來控制CaCO3的晶型,該溶劑既是作為碳源的C02的捕獲劑也是CaCO3晶型引導(dǎo)劑。實驗使用了兩種典型的CO2響應(yīng)可轉(zhuǎn)換溶劑,1,8-二氮雜雙環(huán)(5.4.0)十—碳-7-烯(DBU)和N-丁基二甲基胺(BDA),同時實驗也研究了溫度、鈣濃度、CO2壓力和反應(yīng)時間的影響。結(jié)果表明,該實驗流程可以通過選擇合適的溶劑和調(diào)節(jié)反應(yīng)條件來生產(chǎn)任何晶型的CaC03包括純的亞穩(wěn)球霰石和文石。更進(jìn)—步地,通過機(jī)理研究表明,附著在納米顆粒表面上的各種溶劑可以選擇性地控制和引導(dǎo)任何特定多晶型物相的生長。對于DBU體系,該研究能夠在C02鼓泡...
【文章頁數(shù)】:77 頁
【學(xué)位級別】:碩士
【文章目錄】:
ACKNOWLEGDEMENT
ABSTRACT
摘要
ABBREVIATIONS AND SYMBOLS
Chapter 1 Introduction
1.1. General background
1.2. Literature review
1.2.1. Carbon capture and storage
1.2.2. CO2 sequestration by mineral carbonation
1.2.3. Mineral carbonation process routes
1.2.3.1. In-situ MCT
1.2.3.2. Ex-situ MCT
1.2.4. Calcium carbonate
1.2.5. Forms of calcium carbonate
1.2.5.1. Calcite
1.2.5.2. Vaterite
1.2.5.3. Aragonite
1.2.6. Limitations of the synthesis methods of CaCO3 polymorphs
1.2.6.1. Limitations of synthesis methods of calcite
1.2.6.2. Limitations of synthesis methods of vaterite
1.2.6.3. Limitations of synthesis methods of aragonite
1.2.7. Factors influencing the synthesis of CaCO3 polymorphs
1.2.7.1. Influence of temperature
1.2.7.2. Influence of pH
1.2.7.3. Influence of CO2 flow rate
1.2.7.4. Influence of additives
1.2.7.5. Influence of reactants concentration
1.2.8. Applications of CaCO3 polymorphs
1.2.8.1. Calcite applications
1.2.8.2. Vaterite applications
1.2.8.3. Aragonite applications
1.3. Switchable Hydrophilicity solvents
1.4. Problem statements and motivations
1.4.1. Problem statement
1.4.2. Motivations
Chapter 2 Experimental work and characterization methods
2.1. Chemicals
2.2. General procedure
2.2.1. Experimental procedure for vaterite synthesis using DBU at low pressure
2.2.2. Experimental procedure for Aragonite synthesis using DBU at low pressure
2.2.3. Experimental procedure for vaterite synthesis using DBU under supercritical CO2conditions
2.2.4. Experimental procedure for aragonite synthesis using DBU under supercritical CO2conditions
2.3. Morphological and structural characterization
2.3.1. X-ray diffraction
2.3.2. Functional group analysis
2.3.3. Scanning Electron Microscope (SEM)
2.3.4. Thermal stability analysis
2.3.5. Surface characterization
2.4. Sample analysis and data collection
2.4.1. X-ray diffraction, data collection and phase analysis
2.4.2. FT-IR spectroscopic analysis
2.4.3. TGA analysis data collection
Chapter 3 Results and discussions on synthesis of CaCO3 polymorphs using DBU
3.1. Abstract
3.2. Effect of temperature
3.3. Effect of calcium concentration
3.4. Effect of pressure
3.5. Effect of reaction time
3.6. Effect of DBU/water volume ratio
3.7. Optimum reaction conditions
3.8. Morphology analysis
3.9. Functional groups analysis
3.10. Thermal analysis
3.11. Surface characterization
3.12. Mechanism study
3.13. DBU recycling
Chapter 4 Results and discussions on synthesis of CaCO3 polymorphs using BDA
4.1. Abstract
4.2. Effect of temperature
4.3. Effect of calcium concentration
4.4. Effect of pressure
4.5. Effect of reaction time
4.6. Functional groups analysis
4.7. Thermal analysis
4.8. Surface characterization
4.9. Mechanism study
4.10. Solvent recovery
Chapter 5 Conclusion and recommendations
5.1. Conclusion
5.2. Recommendations
Reference
本文編號:3856805
【文章頁數(shù)】:77 頁
【學(xué)位級別】:碩士
【文章目錄】:
ACKNOWLEGDEMENT
ABSTRACT
摘要
ABBREVIATIONS AND SYMBOLS
Chapter 1 Introduction
1.1. General background
1.2. Literature review
1.2.1. Carbon capture and storage
1.2.2. CO2 sequestration by mineral carbonation
1.2.3. Mineral carbonation process routes
1.2.3.1. In-situ MCT
1.2.3.2. Ex-situ MCT
1.2.4. Calcium carbonate
1.2.5. Forms of calcium carbonate
1.2.5.1. Calcite
1.2.5.2. Vaterite
1.2.5.3. Aragonite
1.2.6. Limitations of the synthesis methods of CaCO3 polymorphs
1.2.6.1. Limitations of synthesis methods of calcite
1.2.6.2. Limitations of synthesis methods of vaterite
1.2.6.3. Limitations of synthesis methods of aragonite
1.2.7. Factors influencing the synthesis of CaCO3 polymorphs
1.2.7.1. Influence of temperature
1.2.7.2. Influence of pH
1.2.7.3. Influence of CO2 flow rate
1.2.7.4. Influence of additives
1.2.7.5. Influence of reactants concentration
1.2.8. Applications of CaCO3 polymorphs
1.2.8.1. Calcite applications
1.2.8.2. Vaterite applications
1.2.8.3. Aragonite applications
1.3. Switchable Hydrophilicity solvents
1.4. Problem statements and motivations
1.4.1. Problem statement
1.4.2. Motivations
Chapter 2 Experimental work and characterization methods
2.1. Chemicals
2.2. General procedure
2.2.1. Experimental procedure for vaterite synthesis using DBU at low pressure
2.2.2. Experimental procedure for Aragonite synthesis using DBU at low pressure
2.2.3. Experimental procedure for vaterite synthesis using DBU under supercritical CO2conditions
2.2.4. Experimental procedure for aragonite synthesis using DBU under supercritical CO2conditions
2.3. Morphological and structural characterization
2.3.1. X-ray diffraction
2.3.2. Functional group analysis
2.3.3. Scanning Electron Microscope (SEM)
2.3.4. Thermal stability analysis
2.3.5. Surface characterization
2.4. Sample analysis and data collection
2.4.1. X-ray diffraction, data collection and phase analysis
2.4.2. FT-IR spectroscopic analysis
2.4.3. TGA analysis data collection
Chapter 3 Results and discussions on synthesis of CaCO3 polymorphs using DBU
3.1. Abstract
3.2. Effect of temperature
3.3. Effect of calcium concentration
3.4. Effect of pressure
3.5. Effect of reaction time
3.6. Effect of DBU/water volume ratio
3.7. Optimum reaction conditions
3.8. Morphology analysis
3.9. Functional groups analysis
3.10. Thermal analysis
3.11. Surface characterization
3.12. Mechanism study
3.13. DBU recycling
Chapter 4 Results and discussions on synthesis of CaCO3 polymorphs using BDA
4.1. Abstract
4.2. Effect of temperature
4.3. Effect of calcium concentration
4.4. Effect of pressure
4.5. Effect of reaction time
4.6. Functional groups analysis
4.7. Thermal analysis
4.8. Surface characterization
4.9. Mechanism study
4.10. Solvent recovery
Chapter 5 Conclusion and recommendations
5.1. Conclusion
5.2. Recommendations
Reference
本文編號:3856805
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/3856805.html
最近更新
教材專著