金屬有機框架衍生多功能電催化材料的設計及性能研究
發(fā)布時間:2022-09-30 22:03
大規(guī)模儲能技術(shù)需要多功能的能量轉(zhuǎn)換與存儲系統(tǒng),包括金屬-空氣電池、金屬-二氧化碳電池以及電解水系統(tǒng)。為了應對當前世界面臨的能源危機,我們迫切需要開發(fā)多功能電催化劑。近年來,人們致力于為二氧化碳還原反應(CO2RR)、氧還原反應(ORR)、析氧反應(OER)和析氫反應(HER)設計高效且經(jīng)濟的電催化劑。但是,開發(fā)一種能夠同時高效催化上述所有過程的單一催化劑仍然是一個巨大的挑戰(zhàn)。本論文針地這一問題,開展了系統(tǒng)研究,以獲得高催化活性的多功能電催化材料,具體研究成果如下:(1)通過在惰性條件下熱解經(jīng)雙氰胺改性的ZIF-67,設計合成了一種高效的兼具ORR和OER雙功能活性的電催化劑。熱解后,Co單原子均勻地分散在具有清晰形態(tài)、高孔隙率和獨特結(jié)構(gòu)的碳納米管表面上。所得電催化劑對ORR和OER均表現(xiàn)出顯著的催化性能,在堿性介質(zhì)條件下的ORR過程中,催化劑的起始電位為0.99 V(相對于可逆氫電極RHE),比Pt/C的起始電位高。而且其半波電位為0.86V(相對于RHE),呈現(xiàn)出較高的四電子還原選擇性。此外,催化劑在OER過程中,當起始電位為1.53 V(相對于RHE)時,達到10mA/cm2時過電...
【文章頁數(shù)】:189 頁
【學位級別】:博士
【文章目錄】:
摘要
Abstract
Annotations of Symbols
1 Introduction
1.1 Background
1.2 The Oxygen Reduction Reaction (ORR)
1.2.1 Mechanism of ORR
1.2.2 ORR in Different Media
1.2.3 Kinetics of ORR
1.2.4 The Tafel Plot
1.2.5 The Exchange Current Density
1.2.6 Techniques Used in Electrocatalytic Oxygen Reduction Reactions
1.3 The Oxygen Evolution Reaction (OER)
1.3.1 Mechanism of OER
1.3.2 Energetics of OER
1.4 The Hydrogen Evolution Reaction (HER)
1.4.1 Mechanism of HER
1.5 Electrochemical Water Splitting (EWS)
1.5.1 Mechanism of EWS
1.5.2 Set Up for EWS
1.5.3 Challenges Associated with Water Splitting
1.6 Electrochemical CO_2 Reduction (CO_2RR)
1.6.1 Main Descriptors for CO2RR
1.7 Zinc Air Batteries (ZABs)
1.7.1 Working Principle of ZABs
1.8 Challenges in Electrochemical Conversions
1.9 Electrocatalysts for Energy Conversion and Storage
1.9.1 Metal-Organic Frameworks toward Electrocatalytic Applications
1.9.2 Single-Metals Based Catalysts
1.9.3 Heteroatom Doped Electrocatalysts
1.10 Motivation
1.11 Outlines of Thesis
2 Experimental Techniques
2.1 Synthesis
2.1.1 Synthesis of ZIF-67
2.1.2 Synthesis of Co@NC
2.1.3 Synthesis of ZIF-67@DCD
2.1.4 Synthesis of CoSAs@CNT Nanotubes
2.1.5 Synthesis of Ni/DCD@ZIF-67
2.1.6 Synthesis of CoNi Alloyed Carbon Nanotubes
2.1.7 Synthesis of Surfactant Modified ZIF-67
2.1.8 Synthesis of BrRT@CoNC
2.1.9 Synthesis of DODAB Modified ZIF-67
2.1.10 Solvo- thermal Synthesis BrHT@CoNC
2.2 Electrochemical Studies
2.2.1 Casting of Electrode for ORR
2.2.2 Casting of Electrode for OER and HER
2.2.3 Casting of Electrode for CO2RR
2.3 Basic Set up for Electrochemical Studies
2.3.1 ORR
2.3.2 OER and HER
2.3.3 Water Splitting
2.3.4 CO2RR
2.3.5 Fabrication of Zinc Air Battery
3 Cobalt Single Atoms Immobilized N-doped Carbon Nanotubes forEnhanced Bifunctional Catalysis towards Oxygen Reduction and OxygenEvolution Reactions
3.1 Introduction
3.2 Experimental
3.2.1 Synthesis of ZIF-67
3.2.2 Synthesis of Co@NC
3.2.3 Synthesis of ZIF-67 @DCD
3.2.4 Synthesis of CoSAs@CNTs nanotubes
3.3 Result and Discussion
3.3.1 Structural Characterization
3.3.2 The growth mechanism of single Co atoms immobilized N-doped carbonnanotubes
3.3.3 Electrochemical Performance Evaluation
3.4 Discussions
3.5 Conclusions
4 Efficient Tetra-Functional Electrocatalyst with Synergetic Effect ofDifferent Active Sites for Multi-Model Energy Conversion and Storage
4.1 Introduction
4.2 Experimental
4.2.1 Synthesis of ZIF-67
4.2.2 Synthesis of Co@NC
4.2.3 Synthesis of Ni/DCD@ZIF-67
4.2.4 Synthesis of NiSAs@ACNTFs
4.2.5 Evaluation of Electrocatalytic Performance
4.3 Results and Discussion
4.3.1 Structure and Morphology
4.3.2 Electrochemical Performance Evaluation
4.3.3 CO_2 reduction
4.4 Discussions
4.5 Conclusions
5 Defect-Enriched Porous Carbon Frameworks for High-PerformanceElectrocatalysis
5.1 Introduction
5.2 Experimental
5.2.1 Synthesis of ZIF-67
5.2.2 Synthesis of Co@NC
5.2.3 Room Temperature Synthesis of DODAB Modified ZIF-67
5.2.4 Synthesis of BrRT@CoNC
5.2.5 Solvothermal Synthesis of DODAB Modified ZIF-67
5.2.6 Synthesis of BrHT@CoNC
5.2.7 Evaluation of Electrocatalytic Performance
5.2.8 Fabrication of Zinc Air Battery
5.3 Results and Discussion
5.3.1 Structure and Morphology
5.3.2 Electrochemical Performance Evaluation
5.4 Discussion
5.5 Conclusions
6 Conclusions and Perspectives
Future Perspectives
References
Acknowledgments
Resume of Author
【參考文獻】:
期刊論文
[1]Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries[J]. Peitao Liu,Jiaqi Ran,Baorui Xia,Shibo Xi,Daqiang Gao,John Wang. Nano-Micro Letters. 2020(05)
[2]摻雜碳封裝的Fe/Co基納米顆粒氧還原催化劑(英文)[J]. 倪保霞,武魯明,陳睿,史成香,陳鐵紅. Science China Materials. 2019(11)
[3]Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review[J]. Song Liu,Hongbin Yang,Xiong Su,Jie Ding,Qing Mao,Yanqiang Huang,Tao Zhang,Bin Liu. Journal of Energy Chemistry. 2019(09)
[4]Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction(HER) in alkaline medium to achieve efficient water splitting–A review[J]. Jamesh Mohammed-Ibrahim,Xiaoming Sun. Journal of Energy Chemistry. 2019(07)
[5]Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction[J]. Peng Zhou,Junying He,Yuqin Zou,Yanyong Wang,Chao Xie,Ru Chen,Shuangquan Zang,Shuangyin Wang. Science China(Chemistry). 2019(10)
[6]Flexible, Porous, and Metal–Heteroatom?Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn–Air Battery[J]. Qijian Niu,Binling Chen,Junxia Guo,Jun Nie,Xindong Guo,Guiping Ma. Nano-Micro Letters. 2019(01)
[7]過渡金屬(Mo,Fe,Co和Ni)基催化劑在電催化還原二氧化碳還原中應用(英文)[J]. 郝金輝,施偉東. 催化學報. 2018(07)
本文編號:3684356
【文章頁數(shù)】:189 頁
【學位級別】:博士
【文章目錄】:
摘要
Abstract
Annotations of Symbols
1 Introduction
1.1 Background
1.2 The Oxygen Reduction Reaction (ORR)
1.2.1 Mechanism of ORR
1.2.2 ORR in Different Media
1.2.3 Kinetics of ORR
1.2.4 The Tafel Plot
1.2.5 The Exchange Current Density
1.2.6 Techniques Used in Electrocatalytic Oxygen Reduction Reactions
1.3 The Oxygen Evolution Reaction (OER)
1.3.1 Mechanism of OER
1.3.2 Energetics of OER
1.4 The Hydrogen Evolution Reaction (HER)
1.4.1 Mechanism of HER
1.5 Electrochemical Water Splitting (EWS)
1.5.1 Mechanism of EWS
1.5.2 Set Up for EWS
1.5.3 Challenges Associated with Water Splitting
1.6 Electrochemical CO_2 Reduction (CO_2RR)
1.6.1 Main Descriptors for CO2RR
1.7 Zinc Air Batteries (ZABs)
1.7.1 Working Principle of ZABs
1.8 Challenges in Electrochemical Conversions
1.9 Electrocatalysts for Energy Conversion and Storage
1.9.1 Metal-Organic Frameworks toward Electrocatalytic Applications
1.9.2 Single-Metals Based Catalysts
1.9.3 Heteroatom Doped Electrocatalysts
1.10 Motivation
1.11 Outlines of Thesis
2 Experimental Techniques
2.1 Synthesis
2.1.1 Synthesis of ZIF-67
2.1.2 Synthesis of Co@NC
2.1.3 Synthesis of ZIF-67@DCD
2.1.4 Synthesis of CoSAs@CNT Nanotubes
2.1.5 Synthesis of Ni/DCD@ZIF-67
2.1.6 Synthesis of CoNi Alloyed Carbon Nanotubes
2.1.7 Synthesis of Surfactant Modified ZIF-67
2.1.8 Synthesis of BrRT@CoNC
2.1.9 Synthesis of DODAB Modified ZIF-67
2.1.10 Solvo- thermal Synthesis BrHT@CoNC
2.2 Electrochemical Studies
2.2.1 Casting of Electrode for ORR
2.2.2 Casting of Electrode for OER and HER
2.2.3 Casting of Electrode for CO2RR
2.3 Basic Set up for Electrochemical Studies
2.3.1 ORR
2.3.2 OER and HER
2.3.3 Water Splitting
2.3.4 CO2RR
2.3.5 Fabrication of Zinc Air Battery
3 Cobalt Single Atoms Immobilized N-doped Carbon Nanotubes forEnhanced Bifunctional Catalysis towards Oxygen Reduction and OxygenEvolution Reactions
3.1 Introduction
3.2 Experimental
3.2.1 Synthesis of ZIF-67
3.2.2 Synthesis of Co@NC
3.2.3 Synthesis of ZIF-67 @DCD
3.2.4 Synthesis of CoSAs@CNTs nanotubes
3.3 Result and Discussion
3.3.1 Structural Characterization
3.3.2 The growth mechanism of single Co atoms immobilized N-doped carbonnanotubes
3.3.3 Electrochemical Performance Evaluation
3.4 Discussions
3.5 Conclusions
4 Efficient Tetra-Functional Electrocatalyst with Synergetic Effect ofDifferent Active Sites for Multi-Model Energy Conversion and Storage
4.1 Introduction
4.2 Experimental
4.2.1 Synthesis of ZIF-67
4.2.2 Synthesis of Co@NC
4.2.3 Synthesis of Ni/DCD@ZIF-67
4.2.4 Synthesis of NiSAs@ACNTFs
4.2.5 Evaluation of Electrocatalytic Performance
4.3 Results and Discussion
4.3.1 Structure and Morphology
4.3.2 Electrochemical Performance Evaluation
4.3.3 CO_2 reduction
4.4 Discussions
4.5 Conclusions
5 Defect-Enriched Porous Carbon Frameworks for High-PerformanceElectrocatalysis
5.1 Introduction
5.2 Experimental
5.2.1 Synthesis of ZIF-67
5.2.2 Synthesis of Co@NC
5.2.3 Room Temperature Synthesis of DODAB Modified ZIF-67
5.2.4 Synthesis of BrRT@CoNC
5.2.5 Solvothermal Synthesis of DODAB Modified ZIF-67
5.2.6 Synthesis of BrHT@CoNC
5.2.7 Evaluation of Electrocatalytic Performance
5.2.8 Fabrication of Zinc Air Battery
5.3 Results and Discussion
5.3.1 Structure and Morphology
5.3.2 Electrochemical Performance Evaluation
5.4 Discussion
5.5 Conclusions
6 Conclusions and Perspectives
Future Perspectives
References
Acknowledgments
Resume of Author
【參考文獻】:
期刊論文
[1]Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries[J]. Peitao Liu,Jiaqi Ran,Baorui Xia,Shibo Xi,Daqiang Gao,John Wang. Nano-Micro Letters. 2020(05)
[2]摻雜碳封裝的Fe/Co基納米顆粒氧還原催化劑(英文)[J]. 倪保霞,武魯明,陳睿,史成香,陳鐵紅. Science China Materials. 2019(11)
[3]Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review[J]. Song Liu,Hongbin Yang,Xiong Su,Jie Ding,Qing Mao,Yanqiang Huang,Tao Zhang,Bin Liu. Journal of Energy Chemistry. 2019(09)
[4]Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction(HER) in alkaline medium to achieve efficient water splitting–A review[J]. Jamesh Mohammed-Ibrahim,Xiaoming Sun. Journal of Energy Chemistry. 2019(07)
[5]Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction[J]. Peng Zhou,Junying He,Yuqin Zou,Yanyong Wang,Chao Xie,Ru Chen,Shuangquan Zang,Shuangyin Wang. Science China(Chemistry). 2019(10)
[6]Flexible, Porous, and Metal–Heteroatom?Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn–Air Battery[J]. Qijian Niu,Binling Chen,Junxia Guo,Jun Nie,Xindong Guo,Guiping Ma. Nano-Micro Letters. 2019(01)
[7]過渡金屬(Mo,Fe,Co和Ni)基催化劑在電催化還原二氧化碳還原中應用(英文)[J]. 郝金輝,施偉東. 催化學報. 2018(07)
本文編號:3684356
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/3684356.html
最近更新
教材專著