廢舊磷酸鐵鋰電池中Li和FePO 4 的選擇性回收
發(fā)布時間:2022-07-11 17:53
鋰離子電池(LIBs)因其高工作電壓和高能量密度而被公認(rèn)為是電動汽車(EV)、便攜式電子設(shè)備和混合電動汽車(HEV)的理想供電來源。其中,以LiFePO4(LFP)為正極的動力電池體系由于壽命長、成本低廉和無毒害的特點,在電動汽車所用電池中占有很大的市場份額。隨著電動汽車行業(yè)的迅速發(fā)展,越來越多的廢舊鋰離子電池隨之產(chǎn)生,這不僅會導(dǎo)致嚴(yán)重的環(huán)境問題,還在一定程度上引起人們對固有資源短缺問題的更多擔(dān)憂。眾所周知,鋰是重要的戰(zhàn)略元素,但其儲量不豐、分布不均。在過去的幾十年中,日益增長的和極其有限的供應(yīng)使得鋰化合物的成本不斷攀升,回收電池行業(yè)大量淘汰的廢舊鋰離子電池對于緩解鋰資源短缺和拓展鋰資源來源都具有十分重要的意義。本文基于回收廢棄鋰電池的技術(shù)現(xiàn)狀,提出了一種在室溫下采用天然有機(jī)酸的浸出方法,從廢棄LiFePO4陰極粉末中回收Li和FePO4。富含檸檬酸和蘋果酸等有機(jī)酸的柑橘類果汁(CFJs)由于其操作簡單、效率較高而被用作浸出劑,主要負(fù)責(zé)金屬離子的浸出。在這項工作中,我們研究了以CFJs為浸出劑從廢LiFePO4陰極中選擇性回收Li和FePO4的方法。并考察了不同類型柑橘類果汁的浸出影響...
【文章頁數(shù)】:91 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
Abstract
Acronyms
1 Introduction
1.1 Review of Lithium-ion batteries
1.1.1 Battery
1.1.2 Lithium-ion battery
1.1.3 Advantages to Li-ion batteries
1.1.4 The compositional structure of LIBs
1.2 Lithium-ion batteries global market outlook
1.3 Application of LIBs
1.4 Classification of LIBs cathode
1.4.1 Layered compounds
1.4.2 Spinel compounds
1.4.3 Polyanion compounds
1.5 Spent lithium-ion batteries
2 State-of-the-Art Recycling Strategies
2.1 General treatment for LIBs
2.1.1 Deactivation
2.1.2 Mechanical separation
2.1.3 Problems with deactivation and mechanical separation of LIBs
2.2 The current recycling strategies for spent LIBs
2.2.1 Pyrometallurgy process
2.2.2 Hydrometallurgy processes
2.3 The current recycling strategies for cathode materials of ternary-LIBs
2.3.1 Pyrometallurgy
2.3.2 Hydrometallurgy
2.3.3 Comparison between pyrometallurgy and hydrometallurgy process
2.4 The current recycling strategies for cathode materials of LFP-LIBs
2.4.1 Direct regeneration
2.4.2 Hydrometallurgical routes
2.4.3 Problems and challenges for recycling spent LFP-cathodes
2.5 Thesis motivation
3 Experimental Setup
3.1 Materials
3.2 Methodology
3.2.1 Selective recovery of Li and FePO_4 from spent LFP cathode material
3.2.2 Re-synthesis of LiFePO_4 cathode material
3.3 Characterization
3.3.1 Compositional and structural characterization
3.3.2 Electrochemical measurements
4 Selective recovery of Li and FePO_4 from spent LiFePO_4 cathode materialby Organic Acids
4.1 Results and discussion
4.1.1 Comparison of the different type of CFJs
4.1.2 Optimization of leaching conditions by lemon juice
4.1.3 Leaching mechanism
4.1.4 Recovery of Li and Fe/P in big batch
5 Re-Synthesis of LFP/C Cathode Material by Recovered Raw Material
5.1 Result and discussion
5.1.1 Regeneration of FePO_4 powder from the recovered leaching residue
5.1.2 Regeneration of LiFePO_4 cathode by the recovered FePO_4
6 Conclusion and Future work
6.1 Conclusion
6.2 Future work recommendation
References
Appendix
Acknowledgement
Author Resume
【參考文獻(xiàn)】:
期刊論文
[1]Gas-based reduction of vanadium titano-magnetite concentrate: behavior and mechanisms[J]. Yu-lei Sui,Yu-feng Guo,Tao Jiang,Xiao-lin Xie,Shuai Wang,Fu-qiang Zheng. International Journal of Minerals Metallurgy and Materials. 2017(01)
[2]從廢舊磷酸鐵鋰電池中回收鋁、鐵和鋰[J]. 吳越,裴鋒,賈蕗路,田旭. 電源技術(shù). 2014(04)
[3]廢舊鋰離子電池正極材料LiFePO4/C的電化學(xué)修復(fù)再生[J]. 楊則恒,張俊,吳情,支莉華,張衛(wèi)新. 硅酸鹽學(xué)報. 2013(08)
[4]動力鋰離子電池隔膜的研究進(jìn)展[J]. 孫美玲,唐浩林,潘牧. 材料導(dǎo)報. 2011(09)
本文編號:3658614
【文章頁數(shù)】:91 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
Abstract
Acronyms
1 Introduction
1.1 Review of Lithium-ion batteries
1.1.1 Battery
1.1.2 Lithium-ion battery
1.1.3 Advantages to Li-ion batteries
1.1.4 The compositional structure of LIBs
1.2 Lithium-ion batteries global market outlook
1.3 Application of LIBs
1.4 Classification of LIBs cathode
1.4.1 Layered compounds
1.4.2 Spinel compounds
1.4.3 Polyanion compounds
1.5 Spent lithium-ion batteries
2 State-of-the-Art Recycling Strategies
2.1 General treatment for LIBs
2.1.1 Deactivation
2.1.2 Mechanical separation
2.1.3 Problems with deactivation and mechanical separation of LIBs
2.2 The current recycling strategies for spent LIBs
2.2.1 Pyrometallurgy process
2.2.2 Hydrometallurgy processes
2.3 The current recycling strategies for cathode materials of ternary-LIBs
2.3.1 Pyrometallurgy
2.3.2 Hydrometallurgy
2.3.3 Comparison between pyrometallurgy and hydrometallurgy process
2.4 The current recycling strategies for cathode materials of LFP-LIBs
2.4.1 Direct regeneration
2.4.2 Hydrometallurgical routes
2.4.3 Problems and challenges for recycling spent LFP-cathodes
2.5 Thesis motivation
3 Experimental Setup
3.1 Materials
3.2 Methodology
3.2.1 Selective recovery of Li and FePO_4 from spent LFP cathode material
3.2.2 Re-synthesis of LiFePO_4 cathode material
3.3 Characterization
3.3.1 Compositional and structural characterization
3.3.2 Electrochemical measurements
4 Selective recovery of Li and FePO_4 from spent LiFePO_4 cathode materialby Organic Acids
4.1 Results and discussion
4.1.1 Comparison of the different type of CFJs
4.1.2 Optimization of leaching conditions by lemon juice
4.1.3 Leaching mechanism
4.1.4 Recovery of Li and Fe/P in big batch
5 Re-Synthesis of LFP/C Cathode Material by Recovered Raw Material
5.1 Result and discussion
5.1.1 Regeneration of FePO_4 powder from the recovered leaching residue
5.1.2 Regeneration of LiFePO_4 cathode by the recovered FePO_4
6 Conclusion and Future work
6.1 Conclusion
6.2 Future work recommendation
References
Appendix
Acknowledgement
Author Resume
【參考文獻(xiàn)】:
期刊論文
[1]Gas-based reduction of vanadium titano-magnetite concentrate: behavior and mechanisms[J]. Yu-lei Sui,Yu-feng Guo,Tao Jiang,Xiao-lin Xie,Shuai Wang,Fu-qiang Zheng. International Journal of Minerals Metallurgy and Materials. 2017(01)
[2]從廢舊磷酸鐵鋰電池中回收鋁、鐵和鋰[J]. 吳越,裴鋒,賈蕗路,田旭. 電源技術(shù). 2014(04)
[3]廢舊鋰離子電池正極材料LiFePO4/C的電化學(xué)修復(fù)再生[J]. 楊則恒,張俊,吳情,支莉華,張衛(wèi)新. 硅酸鹽學(xué)報. 2013(08)
[4]動力鋰離子電池隔膜的研究進(jìn)展[J]. 孫美玲,唐浩林,潘牧. 材料導(dǎo)報. 2011(09)
本文編號:3658614
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/3658614.html
最近更新
教材專著