玻璃微結(jié)構(gòu)電解電火花加工關(guān)鍵技術(shù)研究
[Abstract]:Non-conductive hard brittle materials are more and more widely used in various engineering fields, especially with the rapid development of MEMS, because of their excellent properties, such as high hardness, high strength, good wear resistance, insulation and thermal conductivity, etc. All kinds of non-conductive hard-brittle materials are widely used in aerospace, automotive electronics, biomedicine, defense science and technology and so on. Due to the properties of non-conductive hard brittle materials, it is very difficult to process the microstructure. Electrolysis EDM (EDM) has been reported to be an economical and effective method for micro-structure machining of non-conductive hard brittle materials, which can overcome its hard-brittle and non-conductive characteristics. In order to meet the great demand for the microstructure of non-conductive hard brittle materials, a series of experiments were carried out in this paper by using the micro-electrolysis EDM (EDM) technology, and glass was selected as the research object. The main research contents are as follows: (1) the mechanism of EDM is analyzed, and the mechanism of dielectric film formation and material removal are discussed. It is considered that the main ways of material removal are tool electrode discharge electrothermal removal and high temperature accelerated chemical reaction removal. According to the machining mechanism and test requirements, a micro-electrolysis EDM test platform is set up. (2) the simulation model of gap flow field in micro-ECEDM milling is established, and the simulation results show that, The threaded tool electrode with high speed rotation plays an important role in the renewal of electrolyte in the gap flow field, and the mathematical model of energy and side machining gap in micro electrolysis EDM milling is established. The effects of main process parameters on machining localization were studied respectively. The processing localization was characterized by side machining clearance. The results show that the processing localization becomes worse with the increase of voltage and duty cycle, and increases with the increase of pulse frequency and feed speed. The optimized process parameters are used to drill out the microporous array on the glass workpiece, milling the microgroove array, and machining the glass microstructures such as deep holes, complex microchannels, three-dimensional steps, and so on. The effect of ultrasonic vibration electrolyte on drilling efficiency is discussed. It is found that ultrasonic vibration electrolyte can obtain better quality of inlet machining. (3) A method of micro electrolysis EDM with rotating electrode is proposed. The simulation model of the gap flow field of this method is established. The simulation results show that the method can effectively improve the electrolyte renewal in the cutting gap. A mathematical model of energy and side machining clearance is established by using this method, and the effects of various process parameters on processing localization are studied experimentally. The experimental results show that with the increase of voltage, duty cycle and electrolyte concentration, the processing localization becomes worse, and with the increase of pulse frequency, spindle speed and feed speed, the processing localization becomes better. The glass material was cut and processed, and the optimized parameters were used to fabricate the microslot array, and several typical glass microstructures were successfully machined. The results show that the rotating electrode cutting method proposed in this paper can effectively process glass microstructures. In this paper, the effects of main technological parameters on machining localization are studied by means of micro electrolytic EDM drilling and cutting respectively. Microholes, microgrooves, microslot arrays, deep glass holes are drilled, and complex microchannels are machined by milling. Three dimensional step structure. Many typical glass microstructures have been fabricated by using the rotating electrode cutting method proposed in this paper, and good processing results have been obtained.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ171.68
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 J.Elad;武秀閣;;拉伸耐綸66纖維在熱定型中微結(jié)構(gòu)的重排[J];國(guó)外紡織技術(shù)(化纖、染整、環(huán)境保護(hù)分冊(cè));1985年01期
2 N. V. Bhat;蔣利人;;汗?jié)n對(duì)棉織物微結(jié)構(gòu)的影響[J];纖維標(biāo)準(zhǔn)與檢驗(yàn);1991年01期
3 都有為,陳坤基;鐘山微結(jié)構(gòu)科學(xué)技術(shù)研討會(huì)簡(jiǎn)訊[J];物理;1996年08期
4 李真,徐則達(dá),梁麗珍,蔡志崗,周建英,張靈志,梁兆熙;一種新穎的制作規(guī)則微結(jié)構(gòu)方法[J];中國(guó)激光;2001年04期
5 范建鳳;趙晨醒;范樓珍;;巢狀微結(jié)構(gòu)銀粒子的制備、形成機(jī)理及表面增強(qiáng)拉曼光譜研究[J];化學(xué)學(xué)報(bào);2012年03期
6 陳志斌;;犁削技術(shù)與微結(jié)構(gòu)加工[J];中國(guó)水運(yùn)(學(xué)術(shù)版);2007年01期
7 岳之浩;沈鴻烈;蔣曄;陳偉龍;唐群濤;商威;;單晶黑硅微結(jié)構(gòu)對(duì)其反射率影響的研究[J];功能材料;2014年16期
8 ;輻照材料的微結(jié)構(gòu)處理[J];原子能科學(xué)技術(shù);2000年05期
9 丁長(zhǎng)陽(yáng);韓愛民;吳楠;喬春元;;南京下蜀土微結(jié)構(gòu)及其變形特征的研究[J];西部探礦工程;2009年06期
10 曹志遠(yuǎn),程國(guó)華;非勻質(zhì)材料構(gòu)件微結(jié)構(gòu)分析的細(xì)觀元模型[J];玻璃鋼/復(fù)合材料;2005年01期
相關(guān)會(huì)議論文 前10條
1 黃銀;陳航;馮雪;;基于微結(jié)構(gòu)調(diào)控的可拉伸波狀硅[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
2 王廣軍;楊小鴻;韓筱玉;;進(jìn)行性肌營(yíng)養(yǎng)不良12例亞微結(jié)構(gòu)改變[A];第四次全國(guó)電子顯微學(xué)會(huì)議論文摘要集[C];1986年
3 包崇云;王買全;R. Trukenmuller;張強(qiáng);歐國(guó)敏;宮蘋;C.A. van Blitterswijk;;微結(jié)構(gòu)芯片優(yōu)化牙種植體穿齦部位形貌特征[A];第六屆全國(guó)口腔種植學(xué)術(shù)會(huì)議論文匯編[C];2009年
4 胡瑞林;李向全;官國(guó)琳;葉浩;;粘性土微結(jié)構(gòu)的定量化研究進(jìn)展[A];第五屆全國(guó)工程地質(zhì)大會(huì)文集[C];1996年
5 陳斌;尹大剛;袁權(quán);;脛骨螺旋繞孔微結(jié)構(gòu)[A];第十七屆全國(guó)高技術(shù)陶瓷學(xué)術(shù)年會(huì)摘要集[C];2012年
6 鄧星輝;趙佳彬;于洋;;具有大面積分?jǐn)?shù)的微結(jié)構(gòu)表面靜態(tài)潤(rùn)濕性質(zhì)研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
7 劉輝;李平;魏雨;;Ferrihydrite的微結(jié)構(gòu)對(duì)其催化相轉(zhuǎn)化過程的影響[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(下冊(cè))[C];2006年
8 李易;肖鵬;申峰;劉趙淼;;微結(jié)構(gòu)流動(dòng)潤(rùn)滑中對(duì)阻力影響因素的研究[A];北京力學(xué)會(huì)第20屆學(xué)術(shù)年會(huì)論文集[C];2014年
9 韓巧鳳;王美娟;汪信;;用單原料前驅(qū)體合成不同微結(jié)構(gòu)的硫化鉛納米晶[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第05分會(huì)場(chǎng)摘要集[C];2010年
10 陳嘉鷗;盧承祖;郭素杰;葉斌;;軟土微結(jié)構(gòu)SEM樣品的制備技術(shù)[A];新世紀(jì)巖石力學(xué)與工程的開拓和發(fā)展——中國(guó)巖石力學(xué)與工程學(xué)會(huì)第六次學(xué)術(shù)大會(huì)論文集[C];2000年
相關(guān)重要報(bào)紙文章 前3條
1 宋瑩 姚大捚 陳曉春;南京微結(jié)構(gòu)國(guó)家實(shí)驗(yàn)室建設(shè)正式啟動(dòng)[N];新華日?qǐng)?bào);2005年
2 張曄;“微”結(jié)構(gòu)中的大文章[N];科技日?qǐng)?bào);2005年
3 內(nèi)蒙古金三角光纖科技有限公司 王學(xué)忠;微結(jié)構(gòu)布拉格光纖邁進(jìn)產(chǎn)業(yè)化[N];通信產(chǎn)業(yè)報(bào);2012年
相關(guān)博士學(xué)位論文 前10條
1 黃金國(guó);微結(jié)構(gòu)表面紅外熱輻射特性調(diào)控方法研究[D];南京理工大學(xué);2015年
2 劉高陽(yáng);水電解電催化材料合成、微結(jié)構(gòu)調(diào)控及性能研究[D];北京科技大學(xué);2016年
3 畢宴鋼;有機(jī)電致發(fā)光器件的微結(jié)構(gòu)電極研究[D];吉林大學(xué);2016年
4 侯俊杰;大豆蛋白—甜菜果膠相互作用及其對(duì)食品微結(jié)構(gòu)及感官性質(zhì)影響的研究[D];華南理工大學(xué);2016年
5 董亭亭;仿生蛾眼抗反射微結(jié)構(gòu)光學(xué)機(jī)理研究[D];長(zhǎng)春理工大學(xué);2016年
6 姜輝;金屬—塑料復(fù)合式微結(jié)構(gòu)散熱器換熱機(jī)理的研究[D];北京化工大學(xué);2016年
7 方俊飛;微結(jié)構(gòu)表面功能材料的制備及其熱輻射光譜特性研究[D];南京理工大學(xué);2014年
8 王濤;高g值環(huán)境典型微結(jié)構(gòu)動(dòng)態(tài)特性及其測(cè)試技術(shù)研究[D];大連理工大學(xué);2008年
9 吳勃;金屬仿生功能微結(jié)構(gòu)的激光制備與研究[D];江蘇大學(xué);2011年
10 陳遠(yuǎn)流;面向微結(jié)構(gòu)陣列的超精密切削加工與測(cè)量關(guān)鍵技術(shù)研究[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 胡嘉玲;微結(jié)構(gòu)對(duì)聲傳播特性的影響研究[D];蘇州大學(xué);2015年
2 王會(huì)茗;輥筒模具微結(jié)構(gòu)功能表面的加工實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2015年
3 梁紅培;電紡技術(shù)制備微結(jié)構(gòu)可控的明膠/殼聚糖/羥基磷灰石/氧化石墨烯復(fù)合纖維的研究[D];新疆師范大學(xué);2015年
4 劉曉博;基于微結(jié)構(gòu)配光材料的配光系統(tǒng)原理研究[D];北京化工大學(xué);2015年
5 王雯;微型車刀抗磨損表面仿生微結(jié)構(gòu)設(shè)計(jì)與優(yōu)化[D];長(zhǎng)春理工大學(xué);2015年
6 呂平;高密度封裝基板濺射薄層微結(jié)構(gòu)研究[D];復(fù)旦大學(xué);2014年
7 徐曉穎;微結(jié)構(gòu)硅NH_3傳感器的制備及特性研究[D];電子科技大學(xué);2015年
8 李釗;仿生礦化合成碳酸鈣微結(jié)構(gòu)及其抑菌效應(yīng)的研究[D];華中農(nóng)業(yè)大學(xué);2013年
9 梁燕飛;Pd摻雜花狀I(lǐng)n_2O_3微結(jié)構(gòu)的制備及其氣敏特性研究[D];太原理工大學(xué);2016年
10 姚庠;光學(xué)微結(jié)構(gòu)表面精密加工的關(guān)鍵技術(shù)研究[D];華東理工大學(xué);2016年
,本文編號(hào):2279921
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2279921.html