考慮設(shè)備性能退變的熱虹吸式再沸器軟測(cè)量研究
[Abstract]:Thermosyphon reboiler is an important auxiliary equipment of distillation column. In order to provide a better initial value for heat control of reboiler, the neural network and moving window are combined in this paper. The soft sensing model of heat transfer of thermosyphon reboiler is established, and the influencing factors of each soft-sensing model are studied as follows: (1) the variables of reboiler are analyzed, and the key variables which are easy to measure and controllable are determined on the basis of the mechanism model. Five variables are selected as input and output variables of the data model. (2) the data model between the heat transfer of reboiler and various factors is established by using support vector machine. The effects of different factors on the results of soft measurement of heat transfer are investigated. (3) using the advantage of BP neural network to fit the nonlinear model, the reboiler soft sensor model of heat exchange is established by using the neural network method. The effects of different factors on the results of soft measurement of heat exchange are investigated. (4) according to the time-varying characteristics of the production process and the requirement of the reliability of the model prediction in the implementation of soft sensing technology, the neural network model is improved with the moving window method. Make the model fit the reboiler running state as well as possible. On the premise of ensuring the prediction accuracy, the updating frequency of the model is reduced and the calculation is reduced. The calculation results show that the thermal siphon reboiler heat transfer soft sensing model is established by using the neural network and moving window method. It can provide experience and technical support for on-line detection of time-varying production process.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TQ051.65
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 夏陸岳;朱群娣;王海寧;潘海天;;動(dòng)態(tài)選擇性集成神經(jīng)網(wǎng)絡(luò)軟測(cè)量建模[J];計(jì)算機(jī)與應(yīng)用化學(xué);2016年02期
2 張朝環(huán);;熱虹吸式再沸器的壓力平衡設(shè)計(jì)[J];化工進(jìn)展;2015年S1期
3 高凌云;齊鳴齋;;分壁式精餾塔模擬及節(jié)能研究[J];現(xiàn)代化工;2015年07期
4 薛凌燕;賈保先;;化工行業(yè)智能監(jiān)測(cè)系統(tǒng)的研究[J];自動(dòng)化儀表;2014年12期
5 李曉東;張信;;再生塔熱虹吸再沸器優(yōu)化選型[J];化工設(shè)計(jì);2014年03期
6 王春鵬;于佐軍;孟凡強(qiáng);;折息移動(dòng)窗遞推PLS算法及其在聚丙烯生產(chǎn)過(guò)程中的應(yīng)用[J];化工學(xué)報(bào);2013年12期
7 姜文革;;在線監(jiān)測(cè)與故障診斷系統(tǒng)在煤化工設(shè)備管理中的應(yīng)用[J];中國(guó)設(shè)備工程;2013年07期
8 朱群雄;甄玉山;;用于化工軟測(cè)量的基于移動(dòng)窗的過(guò)程神經(jīng)網(wǎng)絡(luò)[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年09期
9 廉磊;高前進(jìn);江燕斌;;丙酮-水精餾過(guò)程模擬和優(yōu)化[J];化學(xué)工程;2012年08期
10 曹鵬彬;胡加強(qiáng);;化工裝備運(yùn)行狀態(tài)的無(wú)線傳感器網(wǎng)絡(luò)監(jiān)測(cè)系統(tǒng)[J];武漢工程大學(xué)學(xué)報(bào);2012年07期
相關(guān)碩士學(xué)位論文 前2條
1 馮可新;換熱器參數(shù)化建模技術(shù)研究[D];哈爾濱工程大學(xué);2013年
2 甄玉山;基于過(guò)程神經(jīng)網(wǎng)絡(luò)的化工過(guò)程軟測(cè)量研究[D];北京化工大學(xué);2012年
,本文編號(hào):2255035
本文鏈接:http://sikaile.net/kejilunwen/huagong/2255035.html