污染膜清洗條件優(yōu)化及清洗動(dòng)力學(xué)模型的建立
[Abstract]:Membrane technology has been widely used in various industrial fields because of its advantages such as simple operation, high efficiency, energy saving and environmental protection, small occupation area and so on. However, membrane fouling is inevitable in the process of membrane separation, and membrane cleaning is a direct method to solve this problem. In this paper, the method of combination of hydraulic precleaning and chemical cleaning is adopted for the microfiltration membrane fouled in membrane bioreactor (MBR), the corresponding kinetic model is established, and the different operating conditions (temperature, operating pressure) are calculated. The effect of stirring speed on the model parameters. In addition, the polysulfone membrane deposited in the special equipment was cleaned by the method of ultrasonic cleaning and chemical cleaning. The conclusions are as follows: (1) for the cleaning process of contaminated membrane in MBR, the cleaning effect of sodium 1 chlorite is the best, followed by sodium dodecyl sulfonate and sodium hydroxide; (2) the flux recovery rate of the membrane increased firstly with the increase of the concentration of cleaning agent, and then tended to stabilize with the increase of cleaning time. The flux recovery rate of the membrane increased with the increase of the cleaning time, and then the flux recovery rate of the membrane tended to increase with the increase of the temperature. (5) the flux recovery rate of the membrane decreases with the increase of the operating pressure, and the flux recovery rate of the membrane increases slightly with the increase of the stirring speed. The best way to clean it is to do it without pressure, The cleaning temperature of 0.5 wt% sodium hypochlorite for 15 min, can be selected according to the actual situation. (2) for the cleaning process of polysulfone membrane contaminated by dust and oily substances, the flux recovery rate of the 1 / 1 membrane is with ultrasonic electrolysis. The increase of flow; 2 the flux recovery rate of the membrane increases with the increase of ultrasonic time. When the cleaning conditions of citric acid are constant, the flux recovery rate increases firstly and then decreases with the increase of sodium hypochlorite concentration. The cleaning effect of sodium hypochlorite was the best when the mass concentration of sodium hypochlorite was 0.3.When the cleaning conditions of sodium hypochlorite were constant, with the increase of citric acid concentration, The change of flux recovery rate was not regular. The cleaning effect of sodium hypochlorite (0.3 wt%) and citric acid (15 wt%) on the fouled membrane was better than that on the first alkali and then the acid. (5) the cleaning effect of ultrasonic cleaning and chemical cleaning is better than that of ultrasonic cleaning and chemical cleaning. (3) based on the Hom-Haas model, the kinetic model of chemical cleaning is proposed. The model describes the relationship between flux recovery rate and cleaning time and concentration during chemical cleaning. Theoretical analysis shows that the model is feasible. When the model is applied to the chemical cleaning process of MBR contaminated membrane, the conclusion can be drawn as follows: the model can accurately describe the flux recovery rate of sodium hypochlorite cleaning process with the cleaning time and the concentration of cleaning agent. The validity of the model is further proved by comparing the predicted values with the new experimental data. In addition, the contribution rate of each operating condition to the predicted value of the model is analyzed by linear regression analysis. The results show that the model parameter MN is only related to the operating pressure and temperature, while the rate constant k is determined by the operating pressure, temperature and stirring speed. The model can accurately describe the cleaning process of sodium hydroxide and sodium dodecyl sulfonate. In addition, the contribution rate of each operating condition to the predicted value of the model is analyzed by linear regression analysis.
【學(xué)位授予單位】:北京工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ051.893
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王玫瑰;譚壽再;孫永紅;;正交實(shí)驗(yàn)法研制MC尼龍/納米CaCO_3/石墨復(fù)合材料[J];工程塑料應(yīng)用;2007年11期
2 葉曉;姚金苗;王湛;劉興春;劉德忠;張虎;李兆輝;;多元線性回歸模型在死端微濾比阻中的應(yīng)用[J];北京工業(yè)大學(xué)學(xué)報(bào);2007年11期
3 王湛;姚金苗;葉曉;儲(chǔ)金樹;崔彥杰;梁艷莉;張虎;趙新奇;李兆輝;;操作條件對(duì)超濾姬松茸多糖的影響[J];北京工業(yè)大學(xué)學(xué)報(bào);2008年10期
4 任斐;;使用Excel進(jìn)行有交互作用的正交設(shè)計(jì)方差分析[J];電腦知識(shí)與技術(shù);2010年21期
5 李蕓;蘇晗;;改性粉煤灰對(duì)生活污水磷的吸附研究[J];能源與環(huán)境;2008年01期
6 宋麗;張傳亮;;氣力輸灰系統(tǒng)的改造和應(yīng)用[J];能源與環(huán)境;2008年02期
7 黃勤雨;王中來;阮志農(nóng);管棟印;楊佳偉;;介質(zhì)阻擋放電冷電弧脫色的研究[J];高電壓技術(shù);2007年02期
8 林葉新;李忠海;;林檎葉防腐保鮮成分微波提取工藝的優(yōu)化研究[J];化工技術(shù)與開發(fā);2012年03期
9 葉楓;曹北平;;流體阻力摩擦系數(shù)關(guān)聯(lián)式的比較與改進(jìn)[J];廣州化工;2009年02期
10 黃欽;;Origin軟件在物理化學(xué)實(shí)驗(yàn)數(shù)據(jù)處理中的應(yīng)用[J];廣州化工;2012年11期
相關(guān)博士學(xué)位論文 前4條
1 池勇志;微波結(jié)合堿解預(yù)處理改善剩余污泥厭氧消化效能的研究[D];天津大學(xué);2010年
2 蔣培文;公路大跨徑連續(xù)體系橋梁車橋耦合振動(dòng)研究[D];長(zhǎng)安大學(xué);2012年
3 李如燕;廢棄物資源化[D];上海交通大學(xué);2007年
4 肖入峰;反滲透膜系統(tǒng)處理維生素C凝結(jié)水試驗(yàn)研究[D];西南交通大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 朱平;超臨界兩步法制備生物柴油的數(shù)值模擬研究[D];昆明理工大學(xué);2009年
2 李海鵬;天津第二化工廠污水處理項(xiàng)目的設(shè)計(jì)及應(yīng)用[D];天津大學(xué);2012年
3 果棟;四砧拔長(zhǎng)中心壓實(shí)工藝參數(shù)研究[D];燕山大學(xué);2012年
4 王琳;渦旋波膜生物反應(yīng)器COD降解與傳質(zhì)的耦合研究[D];大連理工大學(xué);2006年
5 范理;5-氨基乙酰丙酸的檢測(cè)方法及其穩(wěn)定性研究[D];浙江大學(xué);2006年
6 李健;內(nèi)置鋁制自旋扭帶換熱管工作特性實(shí)驗(yàn)研究[D];廣西大學(xué);2006年
7 崔瑞芳;電動(dòng)勢(shì)法測(cè)定銣、銫氯化物在脂肪醇—水混合溶劑體系中的熱力學(xué)性質(zhì)[D];陜西師范大學(xué);2007年
8 高飛;連續(xù)反應(yīng)精餾生產(chǎn)丁酸酐的工藝開發(fā)[D];青島科技大學(xué);2007年
9 儲(chǔ)金樹;死端微濾過程運(yùn)行條件的優(yōu)化及膜通量的預(yù)測(cè)研究[D];北京工業(yè)大學(xué);2008年
10 畢慶華;氧化鋁生產(chǎn)四效逆流降膜式蒸發(fā)過程出口濃度預(yù)測(cè)模型研究[D];中南大學(xué);2008年
,本文編號(hào):2201216
本文鏈接:http://sikaile.net/kejilunwen/huagong/2201216.html