微納結(jié)構(gòu)三氧化鎢的可控制備及性能研究
[Abstract]:The application of micro nanostructured transition metal oxides has become an important tool to open many advanced functional materials and intelligent devices. Because of their different valence and valence electron configurations, they have special light, electrical, magnetic and mechanical properties, and are applied in many aspects, such as discoloration, luminescence, catalysis, transmission and so on. Chemical nanomaterials are expected to be one of the basic elements of the future nanoscale electronic devices because of their direct, rapid electronic transmission properties and special geometric configurations. In addition, the multi-stage micro nanostructures based on the ordered self-assembled one-dimensional nanostructures have unique three-dimensional spatial structures, many of which have large contact surface area and more activity. The number of loci, this special structure-activity relationship shows the broad prospect of its application. In this paper, we use one dimensional tungsten trioxide material and multistage micro nano structure material based on one dimensional structure of tungsten oxide as the research target. By using the hydrothermal method, the various conditions in the reaction system are adjusted by screening the reaction system, and the crystal structure is prepared. The one-dimensional structure of tungsten trioxide and its self-assembled multistage structure system have been investigated, including the catalytic performance of cyclohexanol catalytic dehydrogenation system and cyclohexene catalytic oxidation system, as well as the related electrochemical properties of electrochemical supercapacitors. The main contents of this study are as follows: (1) the h-WO3 nanorods which grow along the [001] axis are prepared by sodium tungstate and nitric acid as reactant, citric acid, sodium sulfate as dispersant and structural guide. It is worth mentioning that these nanorods are self assembled by the diameter, uniform length of h-WO3 nanowires. The synthesis of cyclohexanone by the catalytic oxidation of cyclohexanol with hydrogen peroxide (H202) as an oxidizing agent under the condition of no phase transfer agent and no acidic ligand is investigated. The results show that the nanorod structure of tungsten oxide can effectively improve oxygen oxygen in hydrogen peroxide under mild reaction conditions (80 degrees C, atmospheric pressure). The yield of cyclohexanone increased from 3.1% to 78.6%, greatly higher than the yield of cyclohexanone (43%) when using commercial tungsten trioxide (43%). The catalyst also showed high catalytic stability. This provides a green path for synthesis of cyclohexanone with a tungsten trioxide nanorod as the catalyst and hydrogen peroxide as a oxidant. (2) A simple and convenient hydrothermal method is used to synthesize tungsten trioxide and multistage tungsten trioxide hydrate with only two kinds of common reactants without the use of the template. The self-assembled tungsten trioxide rod and the nanorod self assembled micro nano structure (spherical, disk) can be obtained by adjusting the pH value of the precursor solution only by adjusting the value of the precursor solution. At the same time, the influence mechanism of pH value on the crystal structure and morphology of the product was investigated by comparison test. Further, the synthesized tungsten oxide tungsten oxide was used as the catalyst to oxidize cyclohexene to adipic acid with hydrogen peroxide (H202) as the oxidizing agent. The results showed that under mild reaction conditions (90 degrees, atmospheric pressure) The catalyst can effectively improve the yield of hexandiacid prepared by hydrogen peroxide catalyzed oxidation of cyclohexene. (3) a tungsten trioxide hydrate (h-WO3. 0.33H2O) multistage structure based on one dimensional self assembly was prepared by hydrothermal method using sodium tungstate as the tungsten source. The structure of this material has the characteristics of three yuan channel and six element channel of h-W03. Water molecules are stacked in the six element channel. This allows protons to be embedded quickly and inlaid in the crystal. At the same time, the multistage structure of the h-WO3. 0.33H2O nanorods also provides a large number of direct and rapid transmission paths for the transmission of electrons. It is due to stable crystal channel structure, proton and electronic dual conduction of h-WO3. 0.33H2O materials The body effect and the special multistage structure make the h-WO3 0.33H2O material have good supercapacitor performance and have a specific capacity of 391 Fg-1 when the current density is 0.5 Ag-1. At the same time, the specific capacity of 298 F g-1 can still be maintained at the current density of 10 A g-1.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TQ136.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 張福連;楊浩;何建英;陳丹云;;鑭改性固體催化劑SnO_2-WO_3/La_2O_3的制備及其催化性能[J];稀土;2013年04期
2 邵麗麗;王雯娟;彭惠琦;王有菲;劉彩華;楊建國;;離子液體相轉(zhuǎn)移催化環(huán)己醇氧化制備環(huán)己酮[J];分子催化;2007年06期
3 唐文明,李朝軍;三氯化釕催化下環(huán)己烷和環(huán)己醇在離子液體中的氧化反應(yīng)研究[J];化學(xué)學(xué)報;2004年07期
4 謝文蓮,李玲,郭燦城;環(huán)己烷氧化制環(huán)己酮工藝技術(shù)進(jìn)展[J];精細(xì)化工中間體;2003年01期
5 張少華,劉春生,羅根祥;硝酸亞鈰催化氧化環(huán)己醇制環(huán)己酮的研究[J];當(dāng)代化工;2002年04期
相關(guān)博士學(xué)位論文 前2條
1 李妍;二維微納結(jié)構(gòu)的轉(zhuǎn)移及初步應(yīng)用[D];東北大學(xué);2015年
2 張鈞君;金屬氧族化合物半導(dǎo)體一維納米材料的可控制備及性能研究[D];合肥工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 陳美均;環(huán)己烯直接綠色合成己二酸鎢系催化劑的研究[D];渤海大學(xué);2015年
2 張聰;苯酚選擇性加氫制備環(huán)己酮的研究[D];青島科技大學(xué);2015年
3 祝嘯;鎳鈷基電極材料的制備及其超級電容性能研究[D];合肥工業(yè)大學(xué);2015年
4 高麗娜;WO_3鋰離子電池和超級電容器電極材料的研究[D];哈爾濱師范大學(xué);2014年
5 張召艷;新型含鎢納米材料的合成及其在己二酸合成反應(yīng)中的應(yīng)用研究[D];復(fù)旦大學(xué);2014年
6 馬漢云;基于Pd催化的苯酚選擇加氫制環(huán)己酮的研究[D];浙江工業(yè)大學(xué);2014年
7 徐飛飛;過渡金屬氧化物多層空心納米球的制備及超級電容性能研究[D];合肥工業(yè)大學(xué);2014年
8 孔祥萍;三維有序大孔氧化鎢電致變色薄膜的制備及其性能研究[D];哈爾濱工業(yè)大學(xué);2011年
9 李太襯;三氧化鎢選擇性催化氧化環(huán)己醇和苯甲醇[D];遼寧石油化工大學(xué);2010年
10 劉寧;負(fù)載型Cu_2O催化劑催化環(huán)己醇脫氫制環(huán)己酮的研究[D];南昌大學(xué);2007年
,本文編號:2142859
本文鏈接:http://sikaile.net/kejilunwen/huagong/2142859.html