大行程納米級壓電陶瓷驅(qū)動控制系統(tǒng)研究
發(fā)布時間:2018-06-28 07:26
本文選題:壓電陶瓷 + 微位移放大機構(gòu)。 參考:《華僑大學》2016年碩士論文
【摘要】:壓電陶瓷是一種能將機械能和電能相互轉(zhuǎn)換的信息功能陶瓷材料,具有位移分辨率高、剛度大、響應(yīng)快、無噪聲等優(yōu)點,在微機械、微電子、精密加工、生物醫(yī)學、機器人和航空航天等領(lǐng)域得到廣泛應(yīng)用。然而,壓電陶瓷本身固有的輸出位移小、遲滯、蠕變、非線性等特性,嚴重影響到精密定位系統(tǒng)的性能。本論文在對壓電陶瓷遲滯、蠕變、非線性等特性進行研究的基礎(chǔ)上,通過設(shè)計柔性鉸鏈微位移放大機構(gòu)將壓電陶瓷的輸出位移進行放大,同時利用神經(jīng)網(wǎng)絡(luò)建立壓電陶瓷蠕變模型,對蠕變誤差進行預測和修正。具體研究內(nèi)容如下:首先,對壓電陶瓷固有特性進行研究。基于極化理論分析了遲滯特性的產(chǎn)生機理,利用晶格間摩擦分析了蠕變特性,同時對非線性和位移重復性等特性展開分析,并結(jié)合實驗對壓電陶瓷特性進行驗證。其次,設(shè)計了一個基于二級杠桿的柔性鉸鏈微位移放大機構(gòu),經(jīng)過放大后的壓電陶瓷輸出最大可達0.3mm。通過理論計算、ANSYS仿真和實驗驗證,對該放大機構(gòu)進行了研究和分析,該機構(gòu)分辨力約為10nm,并通過實驗對放大前后的蠕變量進行對比研究。最后,利用神經(jīng)網(wǎng)絡(luò)建立壓電陶瓷蠕變特性模型。通過建立蠕變模型描述蠕變量與時間、電壓之間的關(guān)系;利用遺傳算法對神經(jīng)網(wǎng)絡(luò)進行優(yōu)化,提高神經(jīng)網(wǎng)絡(luò)的預測精度;采用反向電壓法修正壓電陶瓷蠕變誤差。通過實驗驗證蠕變模型,預測蠕變量,并驗證反向電壓法對減小蠕變誤差的有效性。通過理論研究和實驗驗證,本文的研究工作對于壓電陶瓷的高精度定位有著重要的理論意義和實際應(yīng)用價值。
[Abstract]:Piezoelectric ceramic is a kind of information function ceramic material which can convert mechanical energy and electric energy. It has the advantages of high displacement resolution, high stiffness, fast response, no noise, etc., in micromachined, microelectronics, precision machining, biomedicine, etc. Robotics, aerospace and other fields have been widely used. However, the inherent characteristics of piezoelectric ceramics, such as small output displacement, hysteresis, creep, nonlinear and so on, seriously affect the performance of precision positioning system. Based on the study of hysteresis, creep and nonlinearity of piezoelectric ceramics, the output displacement of piezoelectric ceramics is amplified by designing a flexible hinge micro-displacement amplification mechanism. At the same time, the creep model of piezoelectric ceramics is established by neural network, and the creep error is predicted and corrected. The specific research contents are as follows: firstly, the inherent characteristics of piezoelectric ceramics are studied. Based on polarization theory, the mechanism of hysteresis is analyzed, the creep property is analyzed by friction between lattice, the nonlinear and displacement repeatability are analyzed, and the characteristics of piezoelectric ceramics are verified by experiments. Secondly, a flexible hinge micro-displacement amplification mechanism based on two-stage lever is designed. The maximum output of piezoelectric ceramics after amplification is 0.3 mm. Through theoretical calculation and experimental verification, this amplification mechanism is studied and analyzed. The resolution of the mechanism is about 10 nm, and the creep before and after amplification is compared by experiments. Finally, the creep characteristic model of piezoelectric ceramics is established by neural network. The creep model is established to describe the relationship between creep amount, time and voltage; genetic algorithm is used to optimize the neural network to improve the prediction accuracy of neural network; and the reverse voltage method is used to correct the creep error of piezoelectric ceramics. The creep model is verified by experiments, the creep amount is predicted, and the effectiveness of the reverse voltage method to reduce the creep error is verified. Through theoretical research and experimental verification, the research work in this paper has important theoretical significance and practical application value for high precision positioning of piezoelectric ceramics.
【學位授予單位】:華僑大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TQ174.1;TP273
,
本文編號:2077212
本文鏈接:http://sikaile.net/kejilunwen/huagong/2077212.html
教材專著