氧化銻錫(ATO)的制備及其性能的研究
本文選題:銻摻雜二氧化錫(ATO) + 液相法。 參考:《西南交通大學(xué)》2015年碩士論文
【摘要】:近年來(lái),銻摻雜二氧化錫(ATO)作為透明導(dǎo)電氧化物材料,憑其化學(xué)穩(wěn)定性,高電導(dǎo)率,淺色透明性等優(yōu)良性質(zhì),在很多領(lǐng)域有著廣泛的應(yīng)用,是近年來(lái)飛速發(fā)展的種新型功能材料。目前制備ATO的方法較多,最為常用的為液相法,其制備工藝流程簡(jiǎn)單,過(guò)程易于控制且生產(chǎn)成本低,但需要在溶液中合成ATO顆粒。由于水的存在,金屬離子不僅會(huì)水解,影響了ATO粉體的純度,而且由于水的作用,顆粒會(huì)嚴(yán)重團(tuán)聚,并且晶粒易長(zhǎng)大。因此使用傳統(tǒng)的液相法難以制備出粒徑小、電阻低且分散性好的ATO粉體材料。此外,液相法中沉淀劑常用氨水有揮發(fā)性不易運(yùn)輸和存儲(chǔ),因而也限制了其應(yīng)用;谏鲜鲆合喾ㄖ苽銩TO粉體的問(wèn)題,本論文研究目的是探索優(yōu)于傳統(tǒng)液相法的非水相方法制備高性能的ATO材料。本論文采用了三種不同液相法制備ATO納米導(dǎo)電顆粒,分別為擴(kuò)散共沉淀法、溶劑熱法、直接沉淀法。該三種方法均采用五水四氯化錫與三氯化銻為試劑原料,醇類溶液作為溶劑。并通過(guò)紅外光譜分析、X射線衍射分析、掃描電鏡分析、四探針電阻測(cè)試等方法表征了三種方法制備的ATO顆粒性能,從而對(duì)比選擇出最佳制備方法,并深入研究其形成機(jī)制。由于水在溶劑中會(huì)嚴(yán)重影響ATO納米導(dǎo)電顆粒的性能,本論文還討論了水的含量對(duì)ATO材料的影響。還考察不同摻雜量對(duì)ATO粉體的粒徑、電阻率及微觀結(jié)構(gòu)的影響,從而確定獲得粒徑小、電阻低的ATO材料的最佳摻雜量。實(shí)驗(yàn)結(jié)果顯示,在三種方法中,擴(kuò)散共沉淀法制備的ATO納米顆粒導(dǎo)電性能、分散性能等都相對(duì)較好,用醇類溶液作為溶劑時(shí),ATO前驅(qū)體主要以配位化合物的形式出現(xiàn)。通過(guò)煅燒,ATO前驅(qū)體中的結(jié)晶水、有機(jī)物蒸發(fā)和分解,最終得到ATO粉體。實(shí)驗(yàn)結(jié)果表明,ATO顆粒的電阻率和粒徑都隨著銻摻雜量的增加先減小后增加。溶劑中水的存在會(huì)引起金屬離子的水解以及ATO納米顆粒團(tuán)聚和晶粒長(zhǎng)大,從而不利于制備粒徑小、電阻低的ATO顆粒。本論文采用的三種方法都能成功將銻完全摻雜進(jìn)入二氧化錫晶格中,且經(jīng)過(guò)煅燒后的ATO仍是單一固溶體。擴(kuò)散共沉淀法制備的ATO納米導(dǎo)電顆粒最高電導(dǎo)率為26.67 s.cm-1,顆粒平均粒徑在5-10nnm,直接沉淀法制備的ATO顆粒最高產(chǎn)率可達(dá)88%以上。本研究將為制備粒徑小、電阻低和顆粒分散的ATO粉體提供了工藝簡(jiǎn)單、生產(chǎn)效率高、生產(chǎn)成本低的新途徑。
[Abstract]:In recent years, antimony doped tin dioxide (ATO), as a transparent conductive oxide material, has been widely used in many fields because of its excellent properties such as chemical stability, high conductivity, light color transparency, etc. It is a new functional material developed rapidly in recent years. At present, there are many methods to prepare ATO, the most commonly used method is liquid phase method. Its preparation process is simple, the process is easy to control and the production cost is low, but it is necessary to synthesize ATO particles in solution. Because of the existence of water, the metal ions not only hydrolyze, which affect the purity of ATO powder, but also the particles will be agglomerated seriously and the grain will grow up easily because of the effect of water. Therefore, it is difficult to produce ATO powder with small particle size, low resistance and good dispersion by traditional liquid phase method. In addition, ammonia, a common precipitator in liquid phase, is volatile and difficult to transport and store, thus limiting its application. Based on the problem of preparing ATO powder by liquid phase method mentioned above, the purpose of this paper is to explore the preparation of high performance ATO materials by non-aqueous phase method which is superior to the traditional liquid phase method. In this paper, ATO nanoparticles were prepared by three different liquid phase methods: diffusion co-precipitation method, solvothermal method and direct precipitation method. All the three methods used stannous chloride pentahydrate and antimony trichloride as raw materials and alcohol solution as solvent. The properties of ATO particles prepared by the three methods were characterized by X-ray diffraction analysis, scanning electron microscope analysis and four-probe resistance test. The optimum preparation methods were compared and the formation mechanism of ATO particles was studied. The effect of water content on the properties of ATO nanoparticles was also discussed. The effects of different doping amount on the particle size, resistivity and microstructure of ATO powder were also investigated, and the optimum doping amount of ATO material with small particle size and low resistance was determined. The experimental results show that the conductivity and dispersion of ATO nanoparticles prepared by diffusion coprecipitation method are relatively good. When alcohol solution is used as solvent, the precursor of ATO mainly appears in the form of coordination compound. The ATO powder was obtained by calcining the crystal water in the precursor of ATO, evaporation and decomposition of organic matter. The experimental results show that the resistivity and particle size of ATO particles decrease firstly and then increase with the increase of antimony doping content. The presence of water in the solvent will lead to the hydrolysis of metal ions, the agglomeration of ATO nanoparticles and grain growth, which is not conducive to the preparation of ATO particles with small particle size and low resistance. The three methods used in this paper successfully doped antimony into tin dioxide lattice, and the calcined ATO is still a single solid solution. The maximum conductivity of ATO nanoparticles prepared by diffusion coprecipitation method is 26.67 s 路cm ~ (-1), the average particle size is 5-10 nm 路m ~ (-1), and the highest yield of ATO nanoparticles prepared by direct precipitation method is over 88%. This study will provide a new way for the preparation of ATO powders with small particle size, low resistance and dispersed particle size, high production efficiency and low production cost.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ134.32
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉亞文;能量色散X射線光譜分析[J];分析試驗(yàn)室;1987年04期
2 張東;蔡慶瑞;李嵐;;SnO_2導(dǎo)電粉的研制及性能[J];功能材料;1992年05期
3 張建榮;顧立新;高濂;;水熱法合成單分散性銻摻雜氧化錫納米導(dǎo)電粉體[J];硅酸鹽學(xué)報(bào);2006年04期
4 殷馨;王宏志;張青紅;許國(guó)棟;張建榮;王海文;;溶膠-凝膠法制備銻摻雜氧化錫納米粉體[J];玻璃與搪瓷;2014年05期
5 李振昊;李文樂(lè);孔繁華;閻立軍;任春曉;;摻雜二氧化錫的應(yīng)用研究進(jìn)展[J];化工進(jìn)展;2010年12期
6 周文;李太平;董兵海;許祖勛;萬(wàn)麗;王世敏;;石墨烯/ATO納米復(fù)合材料的制備與表征[J];膠體與聚合物;2013年04期
7 薄占滿;摻Sb二氧化錫半導(dǎo)體導(dǎo)電機(jī)理的實(shí)驗(yàn)探討[J];無(wú)機(jī)材料學(xué)報(bào);1990年04期
8 江名喜,楊天足,楚廣,劉建玲;水熱法合成納米ATO粉末的研究[J];湖南科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年03期
9 江名喜;楊天足;楚廣;古映瑩;杜作娟;;配合-水熱氧化法合成銻摻雜二氧化錫納米粉末[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年02期
10 鄭敏;王保;;One-step synthesis of antimony-doped tin dioxide nanocrystallites and their property[J];Transactions of Nonferrous Metals Society of China;2009年02期
,本文編號(hào):2034921
本文鏈接:http://sikaile.net/kejilunwen/huagong/2034921.html