六面頂壓機關鍵零部件的仿真與檢測研究
發(fā)布時間:2018-06-11 16:23
本文選題:六面頂壓機 + 拓撲優(yōu)化; 參考:《中國石油大學(華東)》2015年碩士論文
【摘要】:六面頂壓機合成腔隨設備的大型化不斷擴大,直接影響著金剛石單晶合成設備的性能與消耗,因此高溫高壓合成條件下的鉸鏈梁與頂錘等關鍵零部件研究,以及工作過程中的頂錘壽命在線跟蹤與檢測研究是壓機大型化的熱點與主要研究內(nèi)容。為此本文基于ANSYS有限元分析軟件與聲發(fā)射檢測儀開展壓機關鍵零部件的仿真分析與聲發(fā)射檢測研究。文中根據(jù)鉸鏈梁與頂錘結(jié)構(gòu)尺寸,采用Pro/E與ANSYS分別建立三維實體模型與有限元模型,運用ANSYS的結(jié)構(gòu)分析與拓撲優(yōu)化分析模塊完成鉸鏈梁的結(jié)構(gòu)與減重優(yōu)化分析,得到鉸鏈梁應力與位移分布,分析可知凸耳外側(cè)邊緣與缸底為易破壞位置且與現(xiàn)場鉸鏈梁實際損壞位置相符;阢q鏈梁有限元結(jié)構(gòu)分析與拓撲優(yōu)化分析結(jié)果,合理選擇設計變量并建立其參數(shù)化有限元模型,采用參數(shù)優(yōu)化與人工優(yōu)化法完成鉸鏈梁的結(jié)構(gòu)參數(shù)優(yōu)化設計,使其減重14.36%,得到鉸鏈梁最優(yōu)結(jié)構(gòu)并通過結(jié)構(gòu)與疲勞有限元分析驗證了其有效性。結(jié)合實際工況條件確定頂錘載荷與邊界條件,進行頂錘溫度場與熱-結(jié)構(gòu)耦合場仿真計算,得到頂錘最高溫度為194.875℃位于上表面中心位置呈中間高四周低的分布規(guī)律,耦合場載荷作用下頂錘頂面小斜面與邊角位置出現(xiàn)最大米賽斯應力1510MPa和最大徑向剪應力576MPa,此部位易發(fā)生開裂且與現(xiàn)場實際開裂位置相符;陧斿N有限元分析結(jié)果與實際開裂位置,開展實驗室與現(xiàn)場頂錘開裂聲發(fā)射檢測試驗并采集相應聲發(fā)射信號,得到頂錘材料硬質(zhì)合金的最大費利西蒂比為0.035,運用關聯(lián)分析、參數(shù)列表、小波與譜分析等手段進行聲發(fā)射信號處理,確定頂錘開裂頻率特征為頻率值大于500KHz出現(xiàn)峰值且波峰幅值大于0.005V。基于開裂頻率特征與實際生產(chǎn)需求,開發(fā)完成能夠跟蹤頂錘壽命監(jiān)測頂錘開裂的聲發(fā)射監(jiān)測系統(tǒng),并將此系統(tǒng)進行了現(xiàn)場測試,到目前為止,此套系統(tǒng)仍在現(xiàn)場測試,運行狀態(tài)良好。
[Abstract]:With the enlargement of the equipment, the synthetic cavity of the six-sided press has a direct impact on the performance and consumption of the diamond single crystal synthesizer, so the key parts such as hinged beam and top hammer are studied under the condition of high temperature and high pressure synthesis. The online tracking and detection of the life of the top hammer in the working process is the hot spot and main research content of the press. Therefore, based on ANSYS finite element analysis software and acoustic emission detector, the simulation analysis and acoustic emission detection of key parts of press are carried out. According to the structure size of hinge beam and top hammer, the three-dimensional solid model and finite element model are established by Prop / E and ANSYS respectively, and the structure and weight loss optimization analysis of hinge beam is completed by using the structural analysis and topology optimization analysis module of ANSYS. The stress and displacement distribution of the hinge beam is obtained. The analysis shows that the lateral edge of the lug and the bottom of the cylinder are easily damaged and are consistent with the actual damage position of the hinge beam in the field. Based on the results of finite element structure analysis and topological optimization analysis of hinged beams, the design variables are reasonably selected and its parameterized finite element model is established, and the structural parameters optimization design of hinged beams is completed by means of parameter optimization and manual optimization. The optimum structure of hinged beam is obtained by reducing the weight by 14.366.The validity of the structure and fatigue finite element analysis is verified. Combined with the actual working conditions, the load and boundary conditions of the top hammer are determined, and the temperature field of the top hammer and the thermal-structure coupling field are simulated and calculated. The distribution law of the top hammer maximum temperature of 194.875 鈩,
本文編號:2005918
本文鏈接:http://sikaile.net/kejilunwen/huagong/2005918.html
教材專著