微通道內(nèi)二氧化碳-水兩相流動與傳質(zhì)實驗研究
本文選題:微通道 + 氣-液兩相流 ; 參考:《大連理工大學》2015年碩士論文
【摘要】:由于微反應(yīng)器在化工領(lǐng)域的巨大優(yōu)勢,微反應(yīng)器中的過程強化以及氣-液兩相流的研究受到了人們密切的關(guān)注。本文通過實驗對微通道內(nèi)氣-液兩相流動和傳質(zhì)規(guī)律進行了研究,旨在掌握微通道內(nèi)氣-液兩相流動及傳質(zhì)規(guī)律,為后期強化微通道內(nèi)傳質(zhì)提供理論指導(dǎo)。制備了1×lmm矩形截面微通道,矩形通道由親水性(0=-43.7°)的銅板加工制成,然后用十八烷基硫醇溶液處理得到疏水表面(0=-114.6°),利用高速攝像儀考察了不同壁面潤濕性下矩形微通道內(nèi)二氧化碳-水氣-液兩相流型。在親水微通道中觀測到了泡狀流、泡狀-彈狀流、Taylor流,其中Taylor流是主要流型;在疏水微通道中觀測到了非對稱彈狀流、拉長的非對稱彈狀流、分層流,其中拉長的非對稱彈狀流和分層流是主要流型。利用1×lmm矩形截面親水微通道和內(nèi)徑為1.08mm、1.26mmm的圓形玻璃毛細管,選用二氧化碳-水為工作流體,利用高速攝像儀考察了氣、液表觀流速和通道當量直徑對微通道內(nèi)Taylor流流體力學性質(zhì)的影響。實驗表明,76.9%的氣泡的長度通常為通道當量直徑的2-5倍,85.3%的液彈的長度通常為通道當量直徑的1-4倍,77.4%的泰勒單元的長度通常為通道當量直徑的5-8倍;氣泡和液彈長度大體上隨氣、液表觀流速之比的增大分別增大和減小,泰勒單元長度隨氣相表觀流速變化復(fù)雜,但隨液相表觀流速的增大而減;通道內(nèi)的氣泡、液彈和泰勒單元長度隨通道當量直徑的增大而增大;氣泡運動速度UB與液彈平均運動速度Uslug的大小關(guān)系為:UslugUB1.28Uslug。搭建了微通道內(nèi)CO2-H2O氣-液兩相流動及傳質(zhì)研究實驗平臺,利用酸堿滴定法測定微通道中C02的吸收量,考察了氣、液表觀流速和通道壁面潤濕性對微通道內(nèi)氣液傳質(zhì)的影響。實驗表明,微通道接觸器比常規(guī)尺度氣-液接觸設(shè)備的液側(cè)體積傳質(zhì)系數(shù)KLα至少要高1-2個數(shù)量級;隨著氣、液表觀流速的增大,液彈內(nèi)循環(huán)區(qū)域液體流動速度增大,組分在液彈中的混合增強,同時,單位時間單位通道橫截面積通過的氣液兩相傳質(zhì)面積增大,故液側(cè)體積傳質(zhì)系數(shù)kLα增大;由于親水微通道和疏水微通道中兩相流型不同,親水微通道中氣液相界面積大,而且液彈內(nèi)循環(huán)區(qū)域液體流動也更快,故液側(cè)體積傳質(zhì)系數(shù)KLα隨通道壁面潤濕性的增強而增大。
[Abstract]:Due to the great advantages of microreactors in chemical industry, the study of process strengthening and gas-liquid two-phase flow in microreactors has been paid close attention to. In this paper, the law of gas-liquid two-phase flow and mass transfer in microchannels is studied through experiments. The purpose of this study is to master the law of gas-liquid two-phase flow and mass transfer in microchannels, and to provide theoretical guidance for the later enhancement of mass transfer in microchannels. A 1 脳 lmm microchannel with rectangular cross-section was prepared. The rectangular channel was fabricated by copper plate with hydrophilic (0 ~ 43.7 擄). The hydrophobic surface was then treated with octadecyl mercaptan solution to obtain the hydrophobic surface. The CO2 / water gas-liquid two-phase flow patterns in rectangular microchannels with different wall wettability were investigated by high speed camera. In hydrophilic microchannels, bubbly flow, bubbly slug flow, Taylor flow is the main flow pattern, asymmetric slug flow, elongated asymmetrical slug flow and stratified flow are observed in hydrophilic microchannels. The elongated asymmetric slug flow and stratified flow are the main flow patterns. A 1 脳 lmm rectangular section hydrophilic microchannel and a circular glass capillary with an inner diameter of 1.08 mm or 1.26 mm were used to investigate the gas, using carbon dioxide and water as the working fluid. The effects of liquid apparent velocity and channel equivalent diameter on the hydrodynamic properties of Taylor flow in microchannels. The experimental results show that the bubble length of 76.9% is usually 2-5 times of channel equivalent diameter and 85.3% of channel equivalent diameter. The length of liquid bomb is usually 1-4 times that of channel equivalent diameter, and the length of Taylor unit with 77.4% channel equivalent diameter is usually 5-8 times that of channel equivalent diameter. The increase of the ratio of liquid apparent velocity increases and decreases respectively. The Taylor cell length changes with the gas phase apparent velocity, but decreases with the increase of liquid phase apparent velocity. The length of liquid bomb and Taylor unit increases with the increase of channel equivalent diameter, and the relationship between bubble velocity UB and the average moving velocity of liquid bomb Uslug is: 1. 28 Uslug. An experimental platform for CO2-H2O gas-liquid two-phase flow and mass transfer in microchannels was set up. The absorption of CO2 in microchannels was determined by acid-base titration. The effects of gas and liquid apparent velocity and wettability on gas-liquid mass transfer in microchannels were investigated. The experimental results show that the volumetric mass transfer coefficient KL 偽 of microchannel contactor is at least 1-2 orders higher than that of conventional gas-liquid contact equipment, and the liquid velocity increases with the increase of gas and liquid apparent velocity. At the same time, the gas-liquid two-phase mass transfer area passing through the cross-sectional area of unit channel per unit time increases, so the volumetric mass transfer coefficient (KL 偽) of the liquid side increases, because the two-phase flow patterns in hydrophilic microchannels and hydrophobic microchannels are different. The gas-liquid boundary area is large in hydrophilic microchannels, and the liquid flow is faster in the liquid-bomb circulation region, so the liquid-side mass transfer coefficient KL 偽 increases with the enhancement of the wettability of the channel wall.
【學位授予單位】:大連理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TQ052
【相似文獻】
相關(guān)期刊論文 前10條
1 陳永平;肖春梅;施明恒;吳嘉峰;;微通道冷凝研究的進展與展望[J];化工學報;2007年09期
2 胡雪;魏煒;雷建都;馬光輝;蘇志國;王化軍;;T型微通道裝置制備尺寸均一殼聚糖微球[J];過程工程學報;2008年01期
3 甘云華;楊澤亮;;軸向?qū)釋ξ⑼ǖ纼?nèi)傳熱特性的影響[J];化工學報;2008年10期
4 楊凱鈞;左春檉;丁發(fā)喜;王克軍;呂海武;曹倩倩;王吉順;;微通道散熱器長直微通道的新加工工藝研究[J];吉林化工學院學報;2011年09期
5 付濤濤;朱春英;王東繼;季喜燕;馬友光;;微通道內(nèi)氣液傳質(zhì)特性[J];化工進展;2011年S2期
6 卜永東;沈寅麒;杜小澤;楊立軍;楊勇平;;仿蜂巢微通道分叉結(jié)構(gòu)的甲醇重整制氫[J];化工學報;2013年06期
7 宋善鵬;于志家;劉興華;秦福濤;方薪暉;孫相_g;;超疏水表面微通道內(nèi)水的傳熱特性[J];化工學報;2008年10期
8 李彩霞;王斯民;胡鵬睿;;等壁溫下平行微通道內(nèi)層流換熱的數(shù)值模擬[J];化學工程;2012年03期
9 李鑫;陳永平;吳嘉峰;施明恒;;寬矩形硅微通道中流動冷凝的流型[J];化工學報;2009年05期
10 馬璨;袁惠新;楊振東;魯娣;;微反應(yīng)器矩形微通道截面高寬比對流速的影響[J];環(huán)境科學與技術(shù);2009年10期
相關(guān)會議論文 前10條
1 史東山;李錦輝;劉趙淼;;關(guān)于微通道相關(guān)問題研究方法現(xiàn)狀分析[A];北京力學會第18屆學術(shù)年會論文集[C];2012年
2 逄燕;劉趙淼;;溫黏關(guān)系對微通道內(nèi)液體流動和傳熱性能的影響[A];北京力學會第18屆學術(shù)年會論文集[C];2012年
3 范國軍;逄燕;劉趙淼;;微通道中液體流動和傳熱特性的影響因素概述[A];北京力學會第18屆學術(shù)年會論文集[C];2012年
4 劉麗昆;逄燕;劉趙淼;;幾何參數(shù)對微通道液體流動和傳熱性能影響的研究[A];北京力學會第18屆學術(shù)年會論文集[C];2012年
5 劉麗昆;劉趙淼;申峰;;幾何參數(shù)對微通道黏性耗散影響的研究[A];北京力學會第19屆學術(shù)年會論文集[C];2013年
6 肖鵬;申峰;劉趙淼;;微通道中矩形微凹槽內(nèi)流場的數(shù)值模擬[A];北京力學會第19屆學術(shù)年會論文集[C];2013年
7 肖鵬;申峰;劉趙淼;李易;;凹槽微通道流場的三維數(shù)值模擬[A];北京力學會第20屆學術(shù)年會論文集[C];2014年
8 周繼軍;劉睿;張政;廖文裕;佘漢佃;;微通道傳熱中的兩相間歇流[A];上海市制冷學會2011年學術(shù)年會論文集[C];2011年
9 夏國棟;柴磊;周明正;楊瑞波;;周期性變截面微通道內(nèi)液體流動與傳熱的數(shù)值模擬研究[A];中國力學學會學術(shù)大會'2009論文摘要集[C];2009年
10 婁文忠;Herbert Reichel;;硅微通道致冷系統(tǒng)設(shè)計與仿真研究[A];科技、工程與經(jīng)濟社會協(xié)調(diào)發(fā)展——中國科協(xié)第五屆青年學術(shù)年會論文集[C];2004年
相關(guān)重要報紙文章 前2條
1 本報記者 陳杰;空調(diào)將進入微通道時代[N];科技日報;2008年
2 張亮;美海軍成功為未來武器研制微型散熱器[N];科技日報;2005年
,本文編號:1940683
本文鏈接:http://sikaile.net/kejilunwen/huagong/1940683.html