球形納米氧化鎂團(tuán)聚粉末的制備研究
本文選題:納米氧化鎂粉末 + 均勻沉淀法。 參考:《湖北工業(yè)大學(xué)》2015年碩士論文
【摘要】:氧化鎂是一種典型的堿土金屬氧化物,它廣泛應(yīng)用于耐火材料、醫(yī)療、食品等領(lǐng)域。納米氧化鎂具有表面效應(yīng)、體積效應(yīng)等,它的性能比普通氧化鎂更加優(yōu)越,可應(yīng)用于納米陶瓷、催化劑等新領(lǐng)域。然而,納米氧化鎂容易團(tuán)聚,而且形貌難以控制,導(dǎo)致它的應(yīng)用受到限制。球形納米氧化鎂團(tuán)聚粉末具有比表面積大、粒徑分布均勻等優(yōu)點(diǎn),因此它的反應(yīng)活性較高、化學(xué)穩(wěn)定性強(qiáng)、與基體結(jié)合能力強(qiáng),可廣泛應(yīng)用于電池、催化劑、殺菌劑、納米陶瓷涂層等領(lǐng)域。本文采用乳液法結(jié)合均勻沉淀法來(lái)制備球形納米氧化鎂團(tuán)聚粉末,以解決納米氧化鎂應(yīng)用受限的問題。本文的主要內(nèi)容如下:1、以尿素為均勻沉淀劑、硝酸鎂為鹽溶液,在高溫密閉的環(huán)境下制備了納米氧化鎂粉末。研究了硝酸鎂的濃度、尿素與硝酸鎂的摩爾比、反應(yīng)時(shí)間、反應(yīng)溫度對(duì)納米氧化鎂粉末的平均粒徑和粒度分布的影響。對(duì)前驅(qū)體粉末和納米氧化鎂粉末采用TG-DTA、BET、XRD、激光粒度測(cè)試儀、SEM進(jìn)行表征。結(jié)果表明,制備的氧化鎂粉末粒徑大約為30nm且粒度分布均勻。最后,對(duì)均勻沉淀法制備納米氧化鎂的機(jī)理進(jìn)行了簡(jiǎn)單的探討,結(jié)果表明尿素水解反應(yīng)控制著整個(gè)反應(yīng)的進(jìn)程,選擇合適的反應(yīng)時(shí)間和溫度將決定納米氧化鎂的性能。2、為了達(dá)到控制團(tuán)聚顆粒形貌的目的,研究了乳液黏度與乳液中水相和乳化劑含量之間的關(guān)系以及電導(dǎo)率與水相含量之間的關(guān)系。此外,還研究了乳化方式和復(fù)合乳化劑的HLB值對(duì)乳液穩(wěn)定性的影響。結(jié)果表明,采用數(shù)顯均質(zhì)乳化機(jī)和HLB=5.5的復(fù)合乳化劑配制的乳液穩(wěn)定性較好。最后,繪制了W/O型乳液的三元系統(tǒng)相圖,發(fā)現(xiàn)穩(wěn)定乳液存在乳白色區(qū)域和透明區(qū)域,并對(duì)乳液的形貌進(jìn)行了觀察。結(jié)果發(fā)現(xiàn),乳液的球形度良好、分散均勻且為微米級(jí)別,可用作球形團(tuán)聚粉末制備的軟模板。3、采用乳液法結(jié)合均勻沉淀法制備了球形度良好、粒徑分布窄的納米氧化鎂團(tuán)聚粉末,并研究了各實(shí)驗(yàn)因素對(duì)粉末性能的影響。結(jié)果顯示,在乳液體系穩(wěn)定的情況下,氧化鎂團(tuán)聚粉末的形貌和粒度分布受鎂鹽的濃度、反應(yīng)時(shí)間、尿素與鎂鹽溶液的摩爾比、反應(yīng)溫度的影響較小;但是受M值(乳化劑體積分?jǐn)?shù))、N值(水相體積分?jǐn)?shù))、乳化攪拌轉(zhuǎn)速、煅燒升溫速率的影響較大。4、為了使團(tuán)聚粉末在保持球形度的同時(shí)比表面積最大化,設(shè)計(jì)了L9(34)的正交實(shí)驗(yàn),以團(tuán)聚粉末的比表面積值作為指標(biāo),得出最佳工藝條件。并在此條件下制備了氧化鎂團(tuán)聚粉末,用XRD、BET、SEM對(duì)粉末進(jìn)行表征。結(jié)果表明,制得的團(tuán)聚粉末的球形度良好、分散性能優(yōu)異,粒度分布范圍:2μm~50μm,平均粒徑大約為30μm,BET的值為54.65m2/g。最后,還對(duì)均勻沉淀法與乳液法相結(jié)合制備球形納米氧化鎂團(tuán)聚粉末的機(jī)理進(jìn)行了簡(jiǎn)單的探討,結(jié)果表明穩(wěn)定的乳液和乳化攪拌轉(zhuǎn)數(shù)、煅燒升溫速率將決定氧化鎂球形團(tuán)聚粉末的性能。
[Abstract]:Magnesium oxide is a typical alkali earth metal oxide, it is widely used in refractory, medical, food and other fields. Nanometer magnesium oxide has surface effect, volume effect and so on. Its performance is superior to that of ordinary magnesium oxide. It can be used in new fields such as nano-ceramics, catalysts and so on. However, nano-MgO is easy to agglomerate and its morphology is difficult to control, so its application is limited. The spherical nano-magnesium oxide agglomerate powder has the advantages of large specific surface area and uniform particle size distribution, so it has high reaction activity, strong chemical stability, strong binding ability with matrix, and can be widely used in batteries, catalysts and fungicides. Nano ceramic coating and other fields. In order to solve the problem of limited application of nano-MgO, spherical nano-MgO agglomerated powder was prepared by emulsion method combined with homogeneous precipitation method in this paper. The main contents of this paper are as follows: 1. The nanometer magnesium oxide powder was prepared by using urea as homogeneous precipitating agent and magnesium nitrate as salt solution in a closed environment at high temperature. The effects of concentration of magnesium nitrate, molar ratio of urea to magnesium nitrate, reaction time and reaction temperature on the average particle size and particle size distribution of nanometer magnesium oxide powder were studied. The precursor powder and nano-MgO powder were characterized by TG-DTA-BET-XRDand laser particle size tester (SEM). The results show that the particle size of the prepared MgO powder is about 30nm and the particle size distribution is uniform. Finally, the mechanism of preparation of nano-MgO by homogeneous precipitation method was discussed. The results showed that the hydrolysis of urea controlled the whole process of the reaction. Choosing the appropriate reaction time and temperature will determine the properties of nano-MgO _ 2. In order to control the morphology of agglomeration particles, The relationship between the viscosity of emulsion and the content of water phase and emulsifier and the relation between conductivity and content of water phase were studied. In addition, the effects of emulsification mode and HLB value of composite emulsifier on emulsion stability were also studied. The results showed that the stability of emulsion prepared by using digital display homogenizing emulsifier and HLB=5.5 composite emulsifier was better. Finally, the ternary system phase diagram of the W / O emulsion was drawn. It was found that the stable emulsion had a milky white region and a transparent region, and the morphology of the emulsion was observed. The results showed that the emulsion had a good spherical degree, uniform dispersion and micron size, and could be used as a soft template for the preparation of spherical agglomeration powder. The spherical degree was obtained by emulsion method combined with homogeneous precipitation method. The effect of various experimental factors on the properties of nano-magnesium oxide agglomerated powder with narrow particle size distribution was studied. The results showed that under the condition of stable emulsion system, the morphology and particle size distribution of magnesium oxide agglomerate powder were less affected by the concentration of magnesium salt, reaction time, the molar ratio of urea to magnesium salt solution, and the reaction temperature. However, the orthogonal experiment of M value (emulsifier volume fraction and N value (water phase volume fraction, emulsifying stirring speed, calcining heating rate) is more important. In order to keep the globality of the agglomerated powder and maximize the specific surface area, the orthogonal experiment was designed. Taking the specific surface area value of agglomerated powder as the index, the optimum process conditions were obtained. Under these conditions, magnesium oxide agglomerated powder was prepared and characterized by XRDX BET-SEM. The results show that the agglomeration powder has good sphericity, excellent dispersion property, particle size distribution range of 50 渭 m ~ 2 渭 m and average particle size of about 30 渭 m BET of 54.65 m ~ 2 / g. Finally, the mechanism of preparation of spherical nano-MgO agglomerated powder by homogeneous precipitation method and emulsion method was simply discussed. The results showed that stable emulsion and emulsified agitating speed were obtained. The calcination rate will determine the properties of MgO spherical agglomerates.
【學(xué)位授予單位】:湖北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ132.2;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭英凱;趙燕禹;趙國(guó)華;商連弟;焦星;;納米氧化鎂的制備[J];化學(xué)工程;2007年06期
2 郭英凱;趙燕禹;趙國(guó)華;商連弟;焦星;;納米氧化鎂的制備研究[J];無(wú)機(jī)鹽工業(yè);2007年05期
3 曹穎;王國(guó)勝;;納米氧化鎂制備技術(shù)的研究進(jìn)展[J];遼寧化工;2008年01期
4 張近;納米氧化鎂合成工藝條件的研究[J];無(wú)機(jī)鹽工業(yè);1999年02期
5 凌程鳳,高雪艷,楊姣,宗俊;草酸鎂分解法制備納米氧化鎂[J];無(wú)機(jī)鹽工業(yè);2005年09期
6 宋士濤,鄧小川,孫建之,馬培華,閆春燕,魏述彬;溶膠—凝膠法制備納米氧化鎂研究[J];鹽湖研究;2005年03期
7 宋士濤;鄧小川;孫建之;馬培華;閆春艷;魏述彬;;納米氧化鎂的制備與表征[J];無(wú)機(jī)鹽工業(yè);2005年12期
8 蔣紅梅,郭人民;一種納米氧化鎂表面改性工藝的研究[J];無(wú)機(jī)鹽工業(yè);2005年01期
9 梁皓,周迎春,張啟儉;納米氧化鎂的制備[J];天津化工;2005年02期
10 許珂;張保林;侯翠紅;陳可可;;納米氧化鎂制備工藝綜述[J];無(wú)機(jī)鹽工業(yè);2007年06期
相關(guān)會(huì)議論文 前10條
1 趙樂;張保林;侯翠紅;王光龍;王斌;;菱鎂礦制備高純納米氧化鎂的實(shí)驗(yàn)研究[A];2009年中國(guó)鎂鹽行業(yè)年會(huì)暨節(jié)能與發(fā)展論壇論文集[C];2009年
2 蔣紅梅;郭人民;趙小玲;;沉淀轉(zhuǎn)化法制備納米氧化鎂及改性工藝研究[A];2006年中國(guó)鎂鹽行業(yè)年會(huì)暨新技術(shù)、新產(chǎn)品、新設(shè)備推介會(huì)論文集[C];2006年
3 王訓(xùn);郭人民;;納米氧化鎂制備工藝研究[A];2005年中國(guó)鎂鹽生產(chǎn)節(jié)能降耗、利用新能源高峰研討會(huì)論文集[C];2005年
4 張偉;王寶和;;納米氧化鎂的制備及動(dòng)力學(xué)研究[A];2005年中國(guó)鎂鹽生產(chǎn)節(jié)能降耗、利用新能源高峰研討會(huì)論文集[C];2005年
5 蔣紅梅;郭人民;;沉淀轉(zhuǎn)化法制備納米氧化鎂及表面改性工藝研究[A];2005年中國(guó)鎂鹽生產(chǎn)節(jié)能降耗、利用新能源高峰研討會(huì)論文集[C];2005年
6 程鳳;高雪艷;楊姣;宗俊;;草酸鎂分解法制備納米氧化鎂[A];2006年中國(guó)鎂鹽行業(yè)年會(huì)暨新技術(shù)、新產(chǎn)品、新設(shè)備推介會(huì)論文集[C];2006年
7 凌程鳳;高雪艷;楊姣;宗俊;;草酸鎂分解法制備納米氧化鎂[A];2007年中國(guó)鎂鹽行業(yè)年會(huì)暨節(jié)能·降耗·環(huán)保技術(shù)信息交流會(huì)論文集[C];2007年
8 王海霞;胡炳元;王麟生;楊廣達(dá);李強(qiáng);;高分子保護(hù)沉淀法制備超細(xì)納米氧化鎂[A];2007年中國(guó)鎂鹽行業(yè)年會(huì)暨節(jié)能·降耗·環(huán)保技術(shù)信息交流會(huì)論文集[C];2007年
9 高雪艷;凌程鳳;談技;宗俊;;冷凍干燥法制備納米氧化鎂條件的研究[A];2007年中國(guó)鎂鹽行業(yè)年會(huì)暨節(jié)能·降耗·環(huán)保技術(shù)信息交流會(huì)論文集[C];2007年
10 李世濤;喬學(xué)亮;陳建國(guó);吳長(zhǎng)樂;梅冰;;納米氧化鎂及其復(fù)合材料的抗菌性能研究[A];2007年中國(guó)鎂鹽行業(yè)年會(huì)暨節(jié)能·降耗·環(huán)保技術(shù)信息交流會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前1條
1 王維;納米氧化鎂及其摻雜粉體的制備與吸附、抗菌性能[D];華中科技大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 鄧洪民;液相法制備納米氧化鎂擴(kuò)大實(shí)驗(yàn)研究[D];西北大學(xué);2006年
2 王輝;球形納米氧化鎂團(tuán)聚粉末的制備研究[D];湖北工業(yè)大學(xué);2015年
3 王小娟;菱鎂礦的綜合利用及納米氧化鎂的制備與性能研究[D];華東師范大學(xué);2010年
4 王訓(xùn);納米氧化鎂制備工藝研究[D];西北大學(xué);2001年
5 侯華衛(wèi);以四甲基溴化銨為添加劑液相法制備納米氧化鎂工藝的研究[D];西北大學(xué);2007年
6 許珂;納米氧化鎂制備技術(shù)研究[D];鄭州大學(xué);2008年
7 王旭;納米氧化鎂紅外吸波性能實(shí)驗(yàn)研究[D];東北大學(xué);2009年
8 魯俊文;納米氧化鎂的摻雜、復(fù)合材料的制備與性能[D];華中科技大學(xué);2013年
9 李海軍;納米氧化鎂系抗菌材料的制備與性能研究[D];華中科技大學(xué);2007年
10 王小宇;納米氧化鎂的制備及其紅外吸收性能研究[D];東北大學(xué) ;2009年
,本文編號(hào):1914777
本文鏈接:http://sikaile.net/kejilunwen/huagong/1914777.html