天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化工論文 >

微生物燃料電池陰極的功能拓展及機理分析

發(fā)布時間:2018-05-09 16:31

  本文選題:微生物燃料電池 + 廢舊鋰電池 ; 參考:《合肥工業(yè)大學》2015年博士論文


【摘要】:微生物燃料電池(Microbial Fuel Cell, MFC)是燃料電池中特殊的一類,它利用微生物作為反應主體,將燃料的化學能轉換為電能。MFC的優(yōu)勢在于其處理環(huán)境廢棄物的同時并對其中蘊涵的能源予以回收,從而起到凈化環(huán)境和生產清潔能源的雙重效果。單從產電的角度來看,短時期內MFC無法超越傳統(tǒng)的燃料電池的電能輸出性能。因此研究者的目光不在僅僅局限于提高電池的產電性能,而如何進一步拓寬MFC處理廢棄物的領域,尤其是如何有效利用陰極以提高MFC的整體功能性,從而使MFC的應用范圍得到了進一步地拓展。因此,本文以MFC技術為核心,結合電化學、微生物學和水文地質學的多種研究方法,以目前常用的兩種典型MFC反應系統(tǒng)作為研究對象,構建了單室和雙室2種類型的矩形反應槽,將MFC的陰極還原能力分別應用于廢舊鋰電池正極材料LiCoO2的還原浸取和對受硝酸鹽污染地下水的原位修復,以提高目標污染物的還原效果和MFC的產電性能為目標,對影響MFC的陰極性能因素展開了研究,得出了以下結論:(1)構建了以弱酸中LiCoO2作為化學陰極電子受體的矩形式雙室MFC,探討了MFC陰極浸取還原LiCoO2的可行性,并探討了MFC陰極浸取還原LiCoO2過程中陰極液pH、陰極液的離子強度、固液比、催化劑CuCl2等因素對MFC的產電性能與LiCoO2浸取效果的影響。實驗結果表明:MFC化學陰極還原LiCoO2使得固相中Co(Ⅲ)被浸取還原為液相中Co(Ⅱ)是可行的,且MFC的浸取效果優(yōu)于單純弱酸浸取,同時監(jiān)測到MFC能夠持續(xù)地輸出電壓。陰極液pH值對MFC浸取LiCoO2的過程影響顯著,pH越低,MFC的產電性能和LiCoO2的浸取效果越明顯;隨著陰極液中KCl和催化劑CuCl2添加濃度的增加,MFC輸出電壓和浸取效率也越高,這是由于陰極液的離子強度增大,活化能減少的緣故;固液比S/L的增加,電池輸出電壓和LiCoO2浸取效率也增大,但是增加的幅度與固液比的增加幅度不成正比;最后對影響MFC陰極輸出電壓和Co(Ⅱ)浸取效果的因素分析討論得出陰極液pH值是LiCoO2還原過程中重要影響因素。因此在后續(xù)的實驗設計中要重點考慮pH對MFC電位和浸取效果的影響。(2)構建了矩形式單槽生物陰極MFC,模擬受硝酸鹽污染地下水的流動條件,對MFC進行補水、排水及淋浴實驗,得到實驗所需的水力學特征系數(shù),即砂槽含水層的孔隙度0.222,持水度0.148以及滲透系數(shù)5.13m/d,說明建立的矩形式單槽MFC內水流符合地下水流動的特點。(3)啟動了矩形式單槽生物陰極MFC,經過4周期的循環(huán),電池的輸出最大電壓穩(wěn)定在500mV左右,整個啟動時間大約需要300h。對MFC啟動成功后運行一段時間的陰極、陽極與空白電極做掃描電鏡分析,陰極和陽極附著的微生物形態(tài)不一樣,陰極碳布的纖維絲表面覆蓋了一層多孔狀結構,細菌多附著在孔狀結構上,陽極碳布的表面生長了大量的長鏈狀微生物。然而對混菌系統(tǒng)的SEM觀察,僅可作為一種輔助手段驗證宏觀的實驗結果。(4)在矩形式單槽生物陰極MFC穩(wěn)定運行下,研究了影響MFC促進硝酸鹽還原的關鍵影響參數(shù)C/N、無機碳源NaHCO3以及水力停留時間HRT對MFC的產電性能和硝酸鹽降解效果的影響。實驗結果表明:C/N和無機碳源NaHCO3的增加使得MFC的輸出電壓增加,降解率也增加,亞硝酸鹽和氨氮積累效果,有助于MFC電壓的輸出;兩種水力停留時間HRT2.0d和1.0d下,MFC的輸出電壓和硝酸鹽的降解不同,HRT小反而有利于電壓輸出和硝酸鹽的降解。(5)研究了MFC反應槽的水力梯度對MFC產電效果和硝酸鹽降解效果的影響。實驗結果表明,水力梯度增大,MFC的最大輸出電壓增大,反應槽的出口水樣中NO3--N濃度減小,NO3--N濃度也呈現(xiàn)出上層濃度大,下層濃度小,且按照水流的水平方向,前端濃度大,后端濃度小的時空分布。這說明水力梯度的改變影響了MFC產電性能和硝酸鹽的降解效果。這種模擬結果更能表達水力梯度變化時,地下水中硝酸鹽的遷移、轉化規(guī)律。(6)采用循環(huán)伏安曲線法掃描分析了陰極、陽極生物膜的電化學行為。結果表明,掛膜的陽極主要發(fā)生的是氧化反應,微生物在電極表面發(fā)生的催化氧化;掛膜的陰極發(fā)生的是還原反應,陰極微生物在電極表面發(fā)生的催化還原。反應溶液中空白電極CV曲線上有一對明顯的氧化還原電對,推測反應溶液中存在由微生物新陳代謝分泌到細胞外的氧化還原介體,MFC體系中存在電子穿梭傳遞機制,電子傳遞的主要任務由電極上的產電微生物完成的。
[Abstract]:Microbial Fuel Cell (MFC) is a special kind of fuel cell. It uses microbes as the main body of reaction. The advantage of converting the chemical energy of fuel into electrical energy.MFC is to deal with environmental waste and recycle the energy contained in it, so as to purify the environment and produce clean energy. In a short period of time, MFC can not exceed the power output performance of traditional fuel cells in the short period of time. Therefore, the researchers' eyes are not only limited to improving the power production performance of the battery, but how to further broaden the field of MFC processing waste, especially how to effectively use the cathode to improve the overall function of the MFC, Thus, the application range of MFC has been further expanded. Therefore, this paper, taking MFC technology as the core, combined with a variety of research methods of electrochemistry, microbiology and hydrogeology, uses two typical typical MFC reaction systems as the research object, and constructs 2 types of rectangular reaction slots in single and double chambers, and the cathodic reduction energy of MFC The force was applied to the reduction leaching of the cathode material LiCoO2 of the waste lithium battery and the in-situ remediation of the contaminated groundwater contaminated by nitrate. In order to improve the reduction effect of the target pollutants and the electricity production performance of the MFC, the factors affecting the performance of the cathode of the MFC were studied. The following conclusions were obtained: (1) the LiCoO2 was constructed in the weak acid. A rectangular double chamber MFC of cathodic electron acceptor is studied. The feasibility of MFC cathodic reduction of LiCoO2 is discussed. The effects of MFC cathode leaching of pH, ionic strength, solid to liquid ratio, and catalyst CuCl2 on MFC in the process of LiCoO2 reduction are discussed. The experimental results show that MFC chemical cathode is used as a chemical cathode. The reduction of LiCoO2 makes the Co (III) in the solid phase reduced to Co (II) in the liquid phase, and the leaching effect of the MFC is better than that of the simple weak acid leaching. At the same time, the MFC can continuously output the voltage. The pH value of the cathode liquid has significant influence on the process of MFC leaching of LiCoO2, the lower the pH, the more obvious the performance of MFC and the LiCoO2 leaching effect; with Yin. The increase in the concentration of KCl and CuCl2 in the solution, the higher the output voltage and the leaching efficiency of MFC, is due to the increase of the ionic strength and the decrease of the activation energy, and the increase of the output voltage and the efficiency of LiCoO2 in the solid to liquid ratio, but the increase is not proportional to the increase in the ratio of solid to liquid. After the analysis of factors affecting the output voltage of MFC cathode and the effect of Co (II) leaching, it is concluded that the pH value of the cathode is an important factor in the process of LiCoO2 reduction. Therefore, the influence of pH on the MFC potential and the leaching effect should be considered in the subsequent experimental design. (2) a moment form single slot Biological Cathode MFC is constructed, and the simulation of the contaminated underground is under the nitrate pollution. The water flow conditions, the MFC water, drainage and shower experiment, get the hydraulic characteristic coefficient of the experiment, that is, the porosity of the aquifer of sand trough 0.222, the water holding degree 0.148 and the permeability coefficient 5.13m/d. It shows that the water flow in the rectangular single slot MFC conforms to the characteristics of the groundwater flow. (3) the moment form single slot Biological Cathode MFC has been started. After 4 cycles of cycle, the maximum output voltage of the battery is stable at about 500mV. The whole startup time requires about 300h. to run the cathode for a period of time after the successful start of the MFC. The anode and the blank electrode are scanned by scanning electron microscope. The microbes attached to the cathode and the anode are different, and the surface of the cathode carbon fabric is covered with a multi hole shape. A large number of long chain microbes have been grown on the surface of the anode carbon cloth. However, the SEM observation of the mixed bacteria system can only be used as a supplementary means to verify the macro experimental results. (4) the key influence of MFC on the reduction of nitrate is studied under the stable operation of the moment form single slot Biological Cathode MFC. The effect of parameter C/N, inorganic carbon source NaHCO3 and hydraulic retention time HRT on the performance of MFC and the effect of nitrate degradation. Experimental results show that the increase of C/N and inorganic carbon source NaHCO3 increase the output voltage of MFC, increase the degradation rate, the effect of nitrite and ammonia nitrogen accumulation, which is helpful to the output of MFC voltage; two kinds of hydraulic retention time. Under HRT2.0d and 1.0d, the output voltage of MFC is different from the degradation of nitrate. HRT is beneficial to the output of voltage and the degradation of nitrate. (5) the effect of the hydraulic gradient on the output of MFC and the effect of nitrate degradation in the MFC reaction tank is studied. The experimental results show that the hydraulic gradient increases, the maximum output voltage of the MFC increases, and the reaction trough is out. The concentration of NO3--N in the saliva sample decreases, and the concentration of NO3--N also shows a large upper layer concentration and lower concentration in the lower layer. In accordance with the horizontal direction of the flow, the concentration of the front end is large and the concentration of the back end is small. This indicates that the change of the hydraulic gradient affects the performance of MFC and the degradation effect of nitrate. This simulation results can express the change of hydraulic gradient more. The migration and transformation of nitrate in the groundwater. (6) the electrochemical behavior of the cathode and the anode biofilm was scanned by cyclic voltammetry. The results showed that the anode of the membrane mainly occurred oxidation, the catalytic oxidation of the microorganism on the surface of the electrode; the cathode of the hanging film was the reduction reaction, the cathode microorganism was in the electricity. Catalytic reduction of polar surfaces. There is a pair of apparent redox electric pairs on the CV curve of the blank electrode in the reaction solution. It is speculated that there is a redox mediator secreted by microorganism metabolism to the extracellular matrix in the reaction solution, and the electron shuttle transmission mechanism exists in the MFC system, and the main task of electronic delivery is the electric microorganism on the electrode. It's done.

【學位授予單位】:合肥工業(yè)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TM911.45

【相似文獻】

相關期刊論文 前10條

1 連靜;馮雅麗;李浩然;劉志丹;周良;;直接微生物燃料電池的構建及初步研究[J];過程工程學報;2006年03期

2 關毅;張鑫;;微生物燃料電池[J];化學進展;2007年01期

3 洪義國;郭俊;孫國萍;;產電微生物及微生物燃料電池最新研究進展[J];微生物學報;2007年01期

4 丁平;邵海波;劉光洲;段東霞;麻挺;陳嗣俊;王建明;張鑒清;;應用需鹽脫硫弧菌的微生物燃料電池發(fā)電研究(英文)[J];電化學;2007年02期

5 園丁;;微生物燃料電池:既處理污水又發(fā)電[J];污染防治技術;2007年03期

6 劉登;劉均洪;劉海洲;;微生物燃料電池的研究進展[J];化學工業(yè)與工程技術;2007年05期

7 張廣柱;劉均洪;;微生物燃料電池研究和應用方面的最新進展[J];化學工業(yè)與工程技術;2008年04期

8 孫健;胡勇有;;廢水處理新理念——微生物燃料電池技術研究進展[J];工業(yè)用水與廢水;2008年01期

9 王萬成;陶冠紅;;微生物燃料電池運行條件的優(yōu)化[J];環(huán)境化學;2008年04期

10 ;微生物燃料電池或成汽車節(jié)能環(huán)保解決方案[J];材料導報;2008年07期

相關會議論文 前10條

1 顧忠澤;吳文果;;微生物燃料電池的研究[A];中國化學會第27屆學術年會第05分會場摘要集[C];2010年

2 趙峰;;來自廢水的能量-微生物燃料電池[A];2010年海峽兩岸環(huán)境與能源研討會摘要集[C];2010年

3 李正龍;劉紅;孔令才;韓梅;;可利用空間基地有機廢物的微生物燃料電池預研[A];中國空間科學學會第16屆空間生命學術研討會論文摘要集[C];2005年

4 孫健;;廢水處理新理念——微生物燃料電池技術研究進展[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國科協(xié)年會論文集(一)[C];2007年

5 趙峰;;微生物燃料電池的電子傳遞及電極反應研究[A];廣東省科協(xié)資助學術會議總結材料[C];2010年

6 付玉彬;;海底微生物燃料電池研究和應用[A];廣東省科協(xié)資助學術會議總結材料[C];2010年

7 孔曉英;李連華;李穎;楊改秀;孫永明;;葡萄糖濃度對微生物燃料電池產電性能的影響[A];廣東省科協(xié)資助學術會議總結材料[C];2010年

8 袁勇;莊莉;周順桂;;盤管式微生物燃料電池的構建及其應用[A];廣東省科協(xié)資助學術會議總結材料[C];2010年

9 喻玉立;袁用波;胡忠;;產電菌的選育及其在微生物燃料電池中的應用[A];廣東省科協(xié)資助學術會議總結材料[C];2010年

10 陳禧;王煒;彭香琴;劉宇波;幸毅明;;微生物燃料電池結構與材料研究進展[A];2013中國環(huán)境科學學會學術年會論文集(第八卷)[C];2013年

相關重要報紙文章 前10條

1 ;微生物燃料電池處理污水發(fā)電兩不誤[N];中國環(huán)境報;2005年

2 記者 符王潤 通訊員 曾曉舵 李潔尉 劉靜;微生物燃料電池有很大挖掘空間[N];廣東科技報;2010年

3 蕭瀟;微生物燃料電池:處理污水發(fā)電兩不誤[N];中國煤炭報;2005年

4 記者 毛黎;微生物燃料電池技術又推進一步[N];科技日報;2006年

5 紀振宇;微生物燃料電池為汽車節(jié)能環(huán)保提供解決方案[N];中國高新技術產業(yè)導報;2008年

6 本報記者 趙亞平;蝦兵蟹將派上新用場[N];科技日報;2007年

7 張芮;希臘從芝士副產品中回收能源[N];中國石化報;2010年

8 常麗君;高空“超級細菌”可成發(fā)電新能源[N];科技日報;2012年

9 編譯 楊孝文;微生物機器人吃蒼蠅發(fā)電[N];北京科技報;2006年

10 記者 陳勇;美科學家開發(fā)出微生物燃料電池[N];新華每日電訊;2005年

相關博士學位論文 前10條

1 黃杰勛;產電微生物菌種的篩選及其在微生物燃料電池中的應用研究[D];中國科學技術大學;2009年

2 陶琴琴;微生物燃料電池同步脫氮除磷及產電性能研究[D];華南理工大學;2015年

3 徐磊;微生物燃料電池PB/rGO陰極材料及導電膜自清潔性能研究[D];大連理工大學;2015年

4 臧國龍;基于微生物燃料電池的復雜廢棄物處置及光電催化制氫[D];中國科學技術大學;2013年

5 代瑩;銀/鐵—碳基復合體作為微生物燃料電池陰極的性能研究[D];黑龍江大學;2016年

6 龔小波;微生物燃料電池高效電極與界面設計強化產電特性研究[D];哈爾濱工業(yè)大學;2016年

7 孫哲;光催化型微生物燃料電池產電特性及對污染物去除研究[D];東華大學;2016年

8 程建萍;微生物燃料電池陰極的功能拓展及機理分析[D];合肥工業(yè)大學;2015年

9 孫彩玉;基于BES污水處理—產能研究及微生物群落結構解析[D];東北林業(yè)大學;2016年

10 杜月;生物陰極微生物燃料電池特性及其與光催化耦合模式的研究[D];哈爾濱工業(yè)大學;2015年

相關碩士學位論文 前10條

1 張鑫;復合微生物燃料電池的研究[D];天津大學;2007年

2 周秀秀;微生物燃料電池陰極催化劑雙核酞菁鈷的結構及性能優(yōu)化[D];華南理工大學;2015年

3 黃麗巧;基于微生物燃料電池技術的同步除碳、硝化/反硝化研究[D];華南理工大學;2015年

4 印霞h,

本文編號:1866734


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1866734.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶0d9df***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com