天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化工論文 >

氧化石墨烯納米流體熱物性能及在熱管中應(yīng)用的研究

發(fā)布時(shí)間:2018-05-09 09:12

  本文選題:氧化石墨烯 + 納米流體; 參考:《濟(jì)南大學(xué)》2017年碩士論文


【摘要】:“納米流體”是指以傳統(tǒng)傳熱工質(zhì)作為基液,向其中加入納米尺寸的添加物形成的一種多相體系,納米添加物的性質(zhì)對(duì)納米流體性能至關(guān)重要。氧化石墨烯是種性能優(yōu)異的獨(dú)特二維材料,導(dǎo)熱性良好且親水性能極佳,是納米流體的理想添加物。作為具有高效傳熱效能的新型傳熱介質(zhì),納米流體在傳熱領(lǐng)域得以廣泛應(yīng)用。熱管則是傳熱領(lǐng)域內(nèi)一種常用的傳熱元件,因而將納米流體應(yīng)用于熱管對(duì)于改善熱管傳熱效能、進(jìn)一步提高傳熱效率有重要意義。本論文將研究氧化石墨烯納米流體的熱物性能及在熱管中的應(yīng)用。首先制備出氧化石墨烯,其次將其分散在基液中形成氧化石墨烯納米流體。實(shí)驗(yàn)研究了氧化石墨烯納米流體的熱物性能參數(shù),初步探討影響氧化石墨烯納米流體熱物性能的因素,進(jìn)一步就其工作機(jī)理從理論上進(jìn)行了簡(jiǎn)要分析。此外,還將實(shí)驗(yàn)制備的氧化石墨烯納米流體填充于熱管探究其對(duì)熱管傳熱能力的影響。該研究不僅可以豐富氧化石墨烯納米流體的熱物性能數(shù)據(jù),為氧化石墨烯納米流體在傳熱領(lǐng)域內(nèi)的應(yīng)用奠定基礎(chǔ),還可以對(duì)納米流體熱管的設(shè)計(jì)開(kāi)發(fā)及優(yōu)化起到積極的推動(dòng)作用。論文主要研究?jī)?nèi)容如下:(1)氧化石墨烯納米流體的制備。首先采用Hummers法制備了氧化石墨,利用超聲剝離的手段得到氧化石墨烯,通過(guò)調(diào)節(jié)剝離時(shí)間得到了三種片層尺寸(5μm、10μm、20μm)的氧化石墨烯。其次將不同片層尺寸的氧化石墨烯分別分散在基液水和乙二醇中制得質(zhì)量分?jǐn)?shù)分別為0.05%、0.1%、0.15%、0.2%、0.25%的氧化石墨烯納米流體,無(wú)需添加任何表面活性劑。吸光度測(cè)量結(jié)果表明所制備的氧化石墨烯納米流體具有良好的懸浮穩(wěn)定性。(2)氧化石墨烯納米流體熱物性能研究。采用KD2-Pro導(dǎo)熱系數(shù)儀、Brookfield粘度計(jì)、JK99B全自動(dòng)界面張力儀等儀器研究了氧化石墨烯納米流體在不同條件下的熱物性能,包括導(dǎo)熱性能、粘度特性、表面張力、接觸角等參數(shù)。結(jié)果發(fā)現(xiàn):在基液中加入氧化石墨烯后,基液的導(dǎo)熱性能提高、粘度增加,表面張力和接觸角則有所降低。此外實(shí)驗(yàn)還發(fā)現(xiàn)液體溫度、納米流體的質(zhì)量分?jǐn)?shù)以及氧化石墨烯片層尺寸對(duì)納米流體的熱物性能均有不同程度的影響。溫度升高,氧化石墨烯納米流體的導(dǎo)熱性能提高,粘度和表面張力降低;質(zhì)量分?jǐn)?shù)增加,氧化石墨烯納米流體的導(dǎo)熱性能、粘度、表面張力均增大;片層尺寸減小會(huì)引起氧化石墨烯納米流體的導(dǎo)熱性和表面張力降低,粘度則增大。實(shí)驗(yàn)還將測(cè)得的氧化石墨烯納米流體的導(dǎo)熱系數(shù)值和粘度值與理論模型計(jì)算結(jié)果對(duì)比。(3)氧化石墨烯納米流體熱管性能研究。自行組裝了氧化石墨烯納米流體熱管性能測(cè)試裝置,探究了氧化石墨烯納米流體對(duì)熱管傳熱性能的影響,主要考察了熱管的啟動(dòng)過(guò)程、壁面溫度分布以及熱管的熱阻、傳熱系數(shù)、有效導(dǎo)熱系數(shù)等。結(jié)果表明:氧化石墨烯納米流體熱管的傳熱性能顯著高于以基液為工質(zhì)的熱管,表現(xiàn)為氧化石墨烯納米流體熱管的熱阻比基液熱管最多降低了50%、有效導(dǎo)熱系數(shù)最大是基液熱管的2.59倍。集總參數(shù)模型理論計(jì)算結(jié)果還表明:可以通過(guò)集總參數(shù)法預(yù)測(cè)氧化石墨烯納米流體熱管的啟動(dòng)過(guò)程。最后實(shí)驗(yàn)還發(fā)現(xiàn)氧化石墨烯納米流體增強(qiáng)熱管傳熱性能的原因主要與吸液芯表面的氧化石墨烯涂覆層有關(guān)。
[Abstract]:"Nanofluids" refers to a multiphase system formed by using traditional heat transfer fluids as base fluids and adding nano sized additives to them. The properties of nanoscale additives are crucial to the performance of nanofluids. Graphene oxide is a unique two-dimensional material with excellent performance, good thermal conductivity and excellent hydrophilic properties. It is the ideal of nanofluids. As a new type of heat transfer medium with efficient heat transfer efficiency, nanofluids are widely used in the field of heat transfer. Heat pipes are a common heat transfer element in the field of heat transfer. Therefore, the application of nanofluids to heat pipes is of great significance to improve heat transfer efficiency of heat pipes and to further improve heat transfer efficiency. This paper will study oxidation in this paper. The thermal properties of graphene Nanofluids and their applications in heat pipes. First, the graphene oxide was prepared, and then it was dispersed in the base liquid to form a graphene oxide nanofluid. The thermal properties of the graphite oxide nanofluids were investigated and the factors affecting the properties of the graphite oxide nanofluids were preliminarily discussed. In addition, the effect of the prepared graphene oxide nanofluid in the heat pipe on the heat transfer capacity of the heat pipe is also investigated. The study not only enriches the thermal property data of the graphite oxide nanofluids, but also lays the foundation for the application of the graphite oxide nanofluid in the field of heat transfer. It can also play an active role in the design, development and optimization of nanofluid heat pipes. The main contents of this paper are as follows: (1) the preparation of graphene oxide nanofluids. First, graphite oxide was prepared by Hummers method, and graphene oxide was obtained by ultrasonic stripping. Three kinds of lamellae were obtained by adjusting the stripping time. Graphene oxide of size (5 mu m, 10 mu m, 20 mu m). Secondly, the graphite oxide nanofluids of 0.05%, 0.1%, 0.15%, 0.2%, 0.25%, respectively, were dispersed in the base liquid water and ethylene glycol, respectively, with different lamellar size of graphene oxide, respectively, without any surface active agent. The absorbance measurement results showed the prepared graphite oxide. Nanofluids have good suspension stability. (2) study on the properties of graphene oxide nanofluids. The thermal properties of graphene oxide nanofluids under different conditions, including thermal conductivity, viscosity properties and surface tension, were studied by using KD2-Pro thermal conductivity meter, Brookfield viscometer, and JK99B fully automatic interfacial tension meter. The results show that the thermal conductivity of the base liquid is improved, the viscosity increases, and the surface tension and contact angle decrease after the addition of graphene oxide in the base solution. In addition, the liquid temperature, the mass fraction of Nanofluids and the size of the graphene oxide layer have different degrees of influence on the thermal properties of the nanofluids. The thermal conductivity of the graphene oxide nanofluid increased, the viscosity and surface tension decreased, the mass fraction increased, the thermal conductivity, viscosity and surface tension of the graphene oxide nanofluids increased. The decrease of the lamellar size would cause the decrease of the thermal conductivity and surface tension of the graphene oxide Nanofluids and the increase of the viscosity. The experiment also increased. The thermal conductivity and viscosity values of the measured graphene oxide nanofluids were compared with the theoretical model results. (3) the properties of the graphite oxide nanofluid heat pipe. The performance test device of the graphite oxide nanofluid heat pipe was self-assembled, and the effect of the graphite oxide nanofluid on the heat transfer performance of the heat pipe was investigated. The starting process of the heat pipe, the distribution of the wall temperature, the thermal resistance of the heat pipe, the heat transfer coefficient, the effective thermal conductivity and so on. The results show that the heat transfer performance of the graphite oxide nanofluid heat pipe is significantly higher than the heat pipe with the base liquid as the working medium, which shows that the thermal resistance of the graphite oxide nanofluid heat pipe has been reduced by 50% and the heat conduction is effective. The maximum coefficient is 2.59 times that of the base liquid heat pipe. The theoretical calculation results of the lumped parameter model also show that the starting process of the graphite oxide nanofluid heat pipe can be predicted by the lumped parameter method. Finally, it is found that the reason of the heat transfer performance of the graphite oxide nanofluid enhanced heat pipe is mainly with the coating layer of the graphite oxide coating on the surface of the liquid sucking core. Of

【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ127.11;TB383.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 蘇新軍;韓魏;張明;郭憲民;;氧化石墨烯對(duì)脈動(dòng)熱管傳熱性能的影響[J];熱科學(xué)與技術(shù);2015年05期

2 張飛龍;王莉;俞樹(shù)榮;毛麗萍;王剛;;氧化石墨烯及其導(dǎo)熱納米流體的制備與性能[J];功能材料;2015年16期

3 張國(guó)龍;王寧峰;鐵生年;賈紅光;;納米氧化鎂在丙二醇中的分散及穩(wěn)定性研究[J];無(wú)機(jī)鹽工業(yè);2015年06期

4 鄭兆志;何欽波;劉玉東;;水基氧化石墨烯納米流體表面張力實(shí)驗(yàn)研究[J];熱科學(xué)與技術(shù);2015年03期

5 馬連湘;常強(qiáng);邱金友;王鈺鵬;;水基碳管納米流體制備及其熱物性實(shí)驗(yàn)研究[J];材料導(dǎo)報(bào);2015年08期

6 吳治將;殷少有;;磁性納米流體Fe_3O_4-H_2O對(duì)流換熱特性研究[J];太陽(yáng)能學(xué)報(bào);2015年02期

7 賴奇;羅學(xué)萍;;氧化石墨烯的制備和定性定量分析[J];材料研究學(xué)報(bào);2015年02期

8 楊輝;趙小娟;趙建國(guó);;氧化石墨烯制備及其結(jié)構(gòu)表征[J];山西大同大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年06期

9 劉玉東;胡光華;劉玉民;胡鵬飛;高潤(rùn)楠;李鑫;;TiO_2-H_2O納米流體熱物性研究[J];化工新型材料;2014年03期

10 姚壽廣;程清芳;王公利;盛冬;蘆笙;;以泡沫金屬為吸液芯的納米流體熱管傳熱性能試驗(yàn)研究[J];江蘇科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期

,

本文編號(hào):1865433

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1865433.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶546c5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com