現(xiàn)場(chǎng)表面增強(qiáng)紅外光譜法研究離子液體體系中可逆鋅電極過程的界面結(jié)構(gòu)
本文選題:離子液體 + 鋅。 參考:《上海大學(xué)》2015年碩士論文
【摘要】:鋅-空氣二次電池因其較高的能量密度,豐富易得的電極原材料,受到人們廣泛的關(guān)注。作為鋅-空氣二次電池的陽極,鋅的可逆電極過程就顯得尤其重要。但是在傳統(tǒng)的堿性電解液中,鋅的沉積總是伴隨有枝晶的形成,水溶液的蒸發(fā),氫脆現(xiàn)象的發(fā)生等問題。室溫離子液體,完全由陰陽離子組成,具有較低的蒸汽壓、較好的熱穩(wěn)定性、較寬的電化學(xué)窗口等優(yōu)點(diǎn),將離子液體作為鋅沉積的電解液,有望解決以上堿溶液中所出現(xiàn)的問題。研究表明在不同的離子液體-鋅鹽混合體系中加入水,會(huì)對(duì)鋅氧化還原反應(yīng)的電化學(xué)性質(zhì)產(chǎn)生巨大影響。眾所周知,鋅電極反應(yīng)發(fā)生在電極/離子液體的界面上,該過程與界面上離子的排布密切相關(guān)。然而,目前為止,相關(guān)的界面結(jié)構(gòu)尚不清楚。因此,研究離子液體混合體系中鋅沉積過程中的電極界面結(jié)構(gòu)具有重要意義,同時(shí)也可以從界面的角度為電沉積鋅提供理論依據(jù)。本文將利用現(xiàn)場(chǎng)表面增強(qiáng)紅外光譜法并結(jié)合電化學(xué)測(cè)試手段研究幾種常見的離子液體及離子液體-水混合體系中鋅電沉積過程中的雙電層界面結(jié)構(gòu)。首先,研究了BF4-陰離子型離子液體([EMIM]BF4],[BMIM][BF4],[OMIM][BF4])及離子液體-水混合體系中鋅的電沉積行為。結(jié)果表明隨著陽離子尺寸增加,離子液體粘度變大,鋅沉積的電位變負(fù),沉積電流密度減小;對(duì)于同一離子液體而言,加水后鋅沉積電位變得更正,沉積電流密度更大,鋅氧化還原可逆性更好。此外,采用表面增強(qiáng)紅外吸收光譜分別研究了[BMIM][BF4]+0.4 M Zn(BF4)2和[BMIM][BF4]+0.4 M Zn(BF4)2+5V/V%H2O,兩類離子液體體系中可逆鋅電極過程的界面結(jié)構(gòu)。結(jié)果表明,加水后,水合鋅離子吸附在電極上,陰陽離子發(fā)生脫附,相應(yīng)的電極界面模型圖被提出。其次,研究了[OTf]-陰離子型離子液體([EMIM][OTf][BMIM][OTf],[OMIM][OTf])及離子液體-水混合體系中鋅在金圓盤電極上的電沉積行為。結(jié)果顯示,加水后,鋅在[EMIM][OTf]和[BMIM][OTf]離子液體體系中沉積的電流密度增加,可逆性變好;在[OMIM][OTf]離子液體-水混合體系中,可能電極界面離子液體溶劑層的形成有關(guān),導(dǎo)致鋅電流密度變小,鋅沉積氧化峰消失。同時(shí),也研究了[BMIM][OTf]+0.4 M Zn(OTf)2和[BMIM][OTf]+0.4 M Zn(OTf)2+5V/V%H2O;[EMIM][OTf]+0.4 M Zn(OTf)2和[EMIM][OTf]+0.4 M Zn(OTf)2+5V/V%H2O四種離子液體體系中鋅沉積的電極界面結(jié)構(gòu)。在[OTf]-陰離子型離子液體體系中,由于[OTf]-陰離子會(huì)在金電極表面發(fā)生特性吸附,所以加水后,電極表面并沒有被完全水化。隨著電位變負(fù),鋅開始沉積,水分子和水合鋅離子逐漸吸附到電極上,陰陽離子被取代而發(fā)生脫附,并提出了相應(yīng)的結(jié)構(gòu)模型。最后,研究了兩種功能化離子液體([Cp MIM][BF4]和[HOEt MIM][BF4])及離子液體-水混合體系中鋅的電沉積行為。結(jié)果表明腈基(-CN)和羥基(-OH)的引入更有益于鋅沉積。本文創(chuàng)新之處在于利用現(xiàn)場(chǎng)表面增強(qiáng)紅外光譜法系統(tǒng)地研究了幾種離子液體體系中可逆鋅電極過程的界面結(jié)構(gòu),深入認(rèn)識(shí)了水在鋅沉積過程中所起的作用,為離子液體中鋅的沉積提供了重要的理論依據(jù)。
[Abstract]:Zinc air two battery has attracted wide attention because of its high energy density and abundant available electrode materials. As the anode of zinc air two battery, the reversible electrode process of zinc is especially important. But in the traditional alkaline electrolyte, the deposition of zinc is always accompanied by the formation of dendrites, the evaporation of aqueous solution, and hydrogen embrittlement. Room temperature ionic liquid, which is composed entirely of yin and yang ions, has the advantages of lower steam pressure, better thermal stability and wider electrochemical window. The ionic liquid is used as the electrolyte of zinc deposition. It is expected to solve the problems in the above alkali solution. The study shows that the different ionic liquid zinc salt mixture is found. It is well known that the reaction of zinc electrode occurs at the interface of the electrode / ionic liquid, which is closely related to the arrangement of ions on the interface. However, so far, the related interface structure is not clear. Therefore, the study of zinc precipitation in the ionic liquid mixture system has been studied. The electrode interface structure in the product process is of great significance, and it can also provide a theoretical basis for electrodeposition of zinc from the angle of the interface. In this paper, the double layer of zinc electrodeposition in several common ionic liquids and ionic liquid mixtures is studied by the field surface enhanced infrared spectroscopy and electrochemical measurement. First, the electrodeposition behavior of zinc in the BF4- anionic liquid ([EMIM]BF4], [BMIM][BF4], [OMIM][BF4]) and ionic liquid water mixtures is studied. The results show that the viscosity of the ionic liquid becomes larger, the potential of the zinc deposition is negative, the deposition current density decreases with the increase of the cation size, and the addition of the current density to the same ionic liquid is added. After water, the zinc deposition potential becomes more positive, the deposition current density is greater, and the redox reversibility of zinc is better. In addition, the interface structure of the reversible zinc electrode process in [BMIM][BF4]+0.4 M Zn (BF4) 2 and [BMIM][BF4]+0.4 M Zn (BF4) 2+5V/V%H2O and the two kind of ionic liquid system is studied by surface enhanced infrared absorption spectroscopy. The zinc ion adsorbed on the electrode, the anion and Yang ion degenerated, the corresponding electrode interface model was proposed. Secondly, the electrodeposition behavior of zinc on the gold disk electrode in the [OTf]- anionic ionic liquid ([EMIM][OTf][BMIM][OTf], [OMIM][OTf]) and the ionic liquid water mixing system was studied. The results showed that after adding water, zinc was in [EMIM][OTf] The current density in the [BMIM][OTf] ionic liquid system increases and the reversibility becomes better. In the [OMIM][OTf] ionic liquid water mixture system, the formation of the ionic liquid solvent layer at the electrode interface is related, which leads to the small zinc current density and the zinc deposition oxidation peak disappearing. Meanwhile, the [BMIM][OTf]+0.4 M Zn (OTf) 2 and [BMIM][OTf]+0.4 M are also studied. Zn (OTf) 2+5V/V%H2O, [EMIM][OTf]+0.4 M Zn (OTf) 2 and [EMIM][OTf]+0.4 M Zn (OTf) 2+5V/V%H2O four ionic liquid systems have the electrode interface structure. In the anion ionic liquid system, the anion will be adsorbed on the surface of the gold electrode, so the surface of the electrode is not completely hydrated after water. As the potential changes, zinc begins to deposit, water molecules and zinc ions are gradually adsorbed on the electrode. The anion and Yang ion is replaced, and the corresponding structural model is put forward. Finally, the electrodeposition behavior of two kinds of functional ionic liquids ([Cp MIM][BF4] and [HOEt MIM][BF4]) and the mixed liquid water mixture system are studied. The introduction of nitrile (-CN) and hydroxyl (-OH) is more beneficial to zinc deposition. The innovation of this paper is to systematically study the interface structure of the reversible zinc electrode process in several ionic liquid systems by using the field surface enhanced infrared spectroscopy, and deeply understand the role of water in the zinc deposition process, providing the deposition of zinc in ionic liquids. An important theoretical basis.
【學(xué)位授予單位】:上海大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:O646.54;TM911.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 邵光杰,,秦秀娟,周德瑞,姜兆華;亞油酸鹽在45鋼電極界面的吸附行為[J];東北重型機(jī)械學(xué)院學(xué)報(bào);1996年01期
2 孔偉;趙芯舫;;電解質(zhì)與電極界面產(chǎn)物電導(dǎo)率測(cè)試與研究[J];中國測(cè)試;2013年06期
3 劉成霞,曹軒,雷存喜,沈國勵(lì),俞汝勤;基于帶強(qiáng)負(fù)電性物質(zhì)作電極界面的電流型轉(zhuǎn)鐵蛋白免疫傳感器的研究[J];分析化學(xué);2004年09期
4 喬海燕;汪振輝;王棟;黃愛平;陳體偉;;納米電極界面的構(gòu)建和茶堿的直接電氧化測(cè)定[J];分析試驗(yàn)室;2009年10期
5 蘇航;李君濤;孫世剛;;Sn-Co薄膜電極界面過程原位傅里葉變換紅外光譜表征[J];大連理工大學(xué)學(xué)報(bào);2011年S1期
6 徐穎;張小燕;楊靜;何品剛;方禹之;;血紅蛋白和SiO_2凝膠層層組裝膜在碳納米管/金納米粒子修飾電極界面上的直接電化學(xué)及電催化研究[J];高等學(xué)校化學(xué)學(xué)報(bào);2011年10期
7 許源榮;齊成紫;印仁和;成旦紅;周尉;;現(xiàn)場(chǎng)表面增強(qiáng)紅外光譜法研究離子液體/電極界面結(jié)構(gòu)[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);2014年02期
8 ;[J];;年期
相關(guān)會(huì)議論文 前1條
1 劉俊;薛裕華;戴黎明;王利祥;;氧化石墨烯作為高分子太陽能電池的電極界面材料[A];2014年兩岸三地高分子液晶態(tài)與超分子有序結(jié)構(gòu)學(xué)術(shù)研討會(huì)摘要集[C];2014年
相關(guān)重要報(bào)紙文章 前1條
1 于柏林;功能化電極界面研究獲重要?jiǎng)?chuàng)新成果[N];中國化工報(bào);2008年
相關(guān)博士學(xué)位論文 前3條
1 孔聰;納米復(fù)合材料傳感界面構(gòu)建及其光電分析應(yīng)用[D];華東理工大學(xué);2013年
2 劉岳峰;基于電極界面調(diào)控提高有機(jī)電致發(fā)光器件性能的研究[D];吉林大學(xué);2014年
3 胡成國;功能化兩性分子的界面吸附表征與電分析應(yīng)用[D];武漢大學(xué);2006年
相關(guān)碩士學(xué)位論文 前3條
1 齊成紫;現(xiàn)場(chǎng)表面增強(qiáng)紅外光譜法研究離子液體體系中可逆鋅電極過程的界面結(jié)構(gòu)[D];上海大學(xué);2015年
2 朱和鳳;納米電極界面功能膜的構(gòu)建及其應(yīng)用研究[D];河南師范大學(xué);2010年
3 姜立芳;電極修飾對(duì)基于PbS納米晶光電器件性能的影響[D];天津理工大學(xué);2014年
本文編號(hào):1860463
本文鏈接:http://sikaile.net/kejilunwen/huagong/1860463.html