氧化石墨烯的制備、改性及對水中鎘的去除研究
本文選題:氧化石墨烯 + 巰基改性氧化石墨烯; 參考:《浙江大學(xué)》2015年碩士論文
【摘要】:石墨烯是由單層碳原子以六元環(huán)形式緊密堆積而成的二維片狀碳納米材料,因其完美的二維晶體結(jié)構(gòu)和獨特的光學(xué)、電學(xué)、力學(xué)和熱學(xué)等性質(zhì),引起學(xué)者的廣泛關(guān)注。氧化石墨烯作為化學(xué)法制備石墨烯的前驅(qū)物,具有比表面積大、電子遷移率高和化學(xué)穩(wěn)定性強(qiáng)等特性。與石墨烯相比,氧化石墨烯表面及邊緣上含有大量的含氧基團(tuán),使其對重金屬、有機(jī)物等污染物質(zhì)具有較好的吸附能力,并易于被修飾與功能化。本文采用改性Hummers法制備出氧化石墨烯,并將其應(yīng)用于水中Cd(Ⅱ)的去除?疾炝藴囟、初始pH、投加量等因素對Cd(Ⅱ)吸附效果的影響,并探究了其對Cd(Ⅱ)的去除機(jī)理。同時針對氧化石墨烯不易從水溶液中分離,難以實現(xiàn)循環(huán)利用的缺點對其進(jìn)行巰基化改性,制備出巰基功能化氧化石墨烯,研究了其對水中Cd(Ⅱ)的吸附性能和再生循環(huán)效果。且通過AFM、TEM、XRD、FITR、Zeta電位、XPS、Raman等技術(shù)對氧化石墨烯和巰基改性氧化石墨烯進(jìn)行了表征。實驗結(jié)果表明:氧化石墨烯與巰基改性氧化石墨烯均為半透明狀的片層結(jié)構(gòu),其表面都具有絲綢一樣的褶皺與折疊,并且在邊緣部位存在明顯的多層結(jié)構(gòu),但是氧化石墨烯的表面褶皺較巰基改性氧化石墨烯更多一些。氧化石墨烯表面具有大量的羥基、羧基、羰基等含氧官能團(tuán),采用巰基乙酸對其進(jìn)行改性后,巰基乙酸的羧基可以與氧化石墨烯的羥基發(fā)生酯化反應(yīng),將巰基枝連到氧化石墨烯的表面。溫度對氧化石墨烯和巰基改性氧化石墨烯去除水中Cd(Ⅱ)的影響均較小。當(dāng)溫度為293.15 K,300.15 K,313.15 K時,氧化石墨烯對Cd(Ⅱ)的去除率分別為90.94%,91.64%,92.67%;而巰基改性氧化石墨烯對Cd(Ⅱ)的去除率有所下降,但較氧化石墨烯更易分離、再生和循環(huán)使用。當(dāng)氧化石墨烯和巰基改性氧化石墨烯投加量逐漸增加時,其對Cd(Ⅱ)的去除率先有一個快速的增大階段,然后上升趨勢減弱,最后逐漸趨于平緩。對其進(jìn)行吸附等溫線擬合發(fā)現(xiàn),氧化石墨烯和巰基改性氧化石墨烯對Cd(Ⅱ)的去除均能較好的用Langmuir等溫式擬合。初始pH對氧化石墨烯和巰基改性氧化石墨烯去除水中Cd(Ⅱ)均有顯著影響。隨著溶液pH的增加,氧化石墨烯對Cd(Ⅱ)的去除率逐漸增大,且當(dāng)初始pH由2.00升高到5.00時,Cd(Ⅱ)的去除率急劇增大,當(dāng)pH繼續(xù)升高,Cd(Ⅱ)的去除率趨于平穩(wěn)。氧化石墨烯表現(xiàn)出較好的酸堿適應(yīng)性,在pH=4時,去除率就已達(dá)到90.05%。而巰基氧化石墨烯對Cd(Ⅱ)的去除率的總趨勢隨著溶液初始pH的升高而增大。當(dāng)pH從2增大至6時,Cd(Ⅱ)的去除率從7.32%升高至73.97%,當(dāng)pH=9和10時,Cd(Ⅱ)去除率增大至88.09%和96.86%。隨著反應(yīng)時間的增加氧化石墨烯及巰基改性氧化石墨烯對Cd(Ⅱ)的總?cè)コ示尸F(xiàn)先逐漸增大后趨于平衡穩(wěn)定的趨勢。氧化石墨烯的反應(yīng)速率較快,在1 min時Cd(Ⅱ)去除率就已達(dá)到77.32%,巰基氧化石墨烯的反應(yīng)速率相對要慢一些,在1 min時Cd(Ⅱ)去除率僅為27.56%,但是兩者均在反應(yīng)2 h內(nèi)達(dá)到平衡。通過對吸附反應(yīng)進(jìn)行動力學(xué)方程擬合發(fā)現(xiàn),氧化石墨烯體系及巰基改性氧化石墨烯體系對Cd(Ⅱ)的吸附均符合準(zhǔn)二級動力學(xué)模型。
[Abstract]:Graphene is a two-dimensional sheet carbon nanomaterial formed by the compact accumulation of single carbon atoms in the form of six membered rings. Because of its perfect two-dimensional crystal structure and unique optical, electrical, mechanical and thermal properties, graphene has attracted wide attention of scholars. As a precursor to the preparation of graphene by chemical method, graphene has a large specific surface area and electron migration. Compared with graphene, the surface and edge of graphene oxide contain a large number of oxygen containing groups, so that they have good adsorption capacity for heavy metals, organic substances and other pollutants, and are easy to be modified and functionalized. In this paper, the modified Hummers method was used to prepare graphene oxide and applied it to water. The removal of Cd (II). The effects of temperature, initial pH, dosage and other factors on the adsorption of Cd (II) were investigated, and the mechanism for the removal of Cd (II) was explored. At the same time, the mercapto modification of graphite oxide was difficult to be separated from aqueous solution, and the sulfhydryl functionalized graphene oxide was prepared. The adsorption properties and regenerative cycle effect of Cd (II) in water were characterized by AFM, TEM, XRD, FITR, Zeta potential, XPS, Raman and other techniques. The results showed that graphene oxide and Mercapto modified graphene oxide were all semitransparent lamellar structure with silks on the surface. The surface folds of graphene oxide are more than that of mercapto modified graphene. The surface of graphene oxide has a large number of hydroxyl, carboxyl, carbonyl and other oxygen-containing functional groups. The carboxyl group of mercapto acetic acid can be modified with Qiu Jiyi acid. The hydroxyl group of graphene oxide is esterified to connect the mercapto branch to the surface of graphene oxide. The temperature has little effect on the removal of Cd (II) in water by graphene oxide and Mercapto modified graphene oxide. When the temperature is 293.15 K, 300.15 K, and 313.15 K, the removal rates of graphene oxide to Cd (II) are 90.94%, 91.64%, 92.67%, and the sulfhydryl group, respectively. The removal rate of modified graphene oxide has a decrease in the removal rate of Cd (II), but it is more easily separated, regenerated and recycled than graphene oxide. When the dosage of graphene oxide and Mercapto modified graphene oxide gradually increases, the removal of Cd (II) first has a rapid increase stage, then the rising trend is weakened, and finally gradually tends to flat. The adsorption isotherm fitting shows that the removal of Cd (II) by graphene oxide and Mercapto modified graphene oxide can be better fitted with Langmuir isothermal fitting. Initial pH has significant influence on the removal of Cd (II) in water by graphene oxide and Mercapto modified graphene oxide. With the increase of pH, the removal rate of graphene oxide to Cd (II) When the initial pH increased from 2 to 5, the removal rate of Cd (II) increased rapidly. When pH continued to increase, the removal rate of Cd (II) tended to be stable. The removal rate of graphene oxide was better than that of 90.05%. while the removal rate of the mercapto oxygen fossil to Cd (II) was the general trend with the initial pH of solution at pH=4. When the pH increased from 2 to 6, the removal rate of Cd (II) increased from 7.32% to 73.97%. When pH=9 and 10, the removal rate of Cd (II) increased to 88.09% and 96.86%., with the increase of the total removal rate of graphene oxide and Mercapto modified graphene oxide as the reaction time increased, and then the total removal rate of Cd (II) gradually increased and then tended to be stable and stable. The reaction rate of the fossil graphene is faster, the removal rate of Cd (II) has reached 77.32% at 1 min, and the reaction rate of mercapto graphene oxide is relatively slow, and the removal rate of Cd (II) is only 27.56% at 1 min, but both of them balance within the reaction of 2 h. The adsorption of Cd (II) by sulfhydryl modified graphene oxide accords with the quasi two level kinetic model.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TQ127.11;X703
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 任繼平,李德發(fā),張麗英;鎘毒性研究進(jìn)展[J];動物營養(yǎng)學(xué)報;2003年01期
2 陳陽,鐘國清,張永強(qiáng),王剛;電鍍鎘廢水處理的工藝研究[J];電鍍與精飾;2004年05期
3 張德強(qiáng),康海彥,楊莉麗,李娜,高麗榮;離子交換樹脂吸附Cd(Ⅱ)和Pb(Ⅱ)的研究[J];環(huán)境科學(xué)與技術(shù);2003年S1期
4 畢士川;于慧娟;蔡友瓊;黃冬梅;李慶;沈曉盛;;重金屬Cd在不同水產(chǎn)品中的含量及污染狀況評價[J];環(huán)境科學(xué)與技術(shù);2009年04期
5 譚浩強(qiáng);吳維;劉志濱;何文杰;韓宏大;馬越;;化學(xué)沉淀法去除水中鎘的特性研究[J];供水技術(shù);2010年04期
6 王志忠,高以?,凌愛蓮;反滲透技術(shù)處理鍍鎘廢水的探討[J];工業(yè)水處理;1985年05期
7 宇克莉;孟慶敏;鄒金華;;鎘對玉米幼苗生長、葉綠素含量及細(xì)胞超微結(jié)構(gòu)的影響[J];華北農(nóng)學(xué)報;2010年03期
8 張玉梅;含鎘廢水處理的試驗研究[J];環(huán)境工程;1995年01期
9 邱廷省,成先雄;啤酒酵母吸附鎘離子的試驗研究[J];環(huán)境污染與防治;2004年02期
10 沈華;顏料工業(yè)含鎘廢水治理研究[J];精細(xì)化工中間體;2001年01期
相關(guān)博士學(xué)位論文 前2條
1 陳云嫩;廢麥糟生物吸附劑深度凈化水體中砷、鎘的研究[D];中南大學(xué);2009年
2 陳京都;水稻鎘脅迫響應(yīng)差異機(jī)理和調(diào)控效應(yīng)的研究[D];揚州大學(xué);2013年
相關(guān)碩士學(xué)位論文 前3條
1 于鳳銀;氧化石墨烯及其復(fù)合物在表面增強(qiáng)拉曼光譜中的研究[D];吉林大學(xué);2012年
2 趙闖;化學(xué)還原氧化石墨烯及其復(fù)合物的制備和應(yīng)用研究[D];河南大學(xué);2013年
3 張議;基于幾種巰基改性石墨烯復(fù)合物的電分析研究[D];湖南師范大學(xué);2014年
,本文編號:1827277
本文鏈接:http://sikaile.net/kejilunwen/huagong/1827277.html