MOF基光催化劑的合成、電荷分離與分解水產(chǎn)氫性能研究
本文選題:金屬-有機(jī)框架材料 + 金屬納米顆粒; 參考:《中國科學(xué)技術(shù)大學(xué)》2017年博士論文
【摘要】:金屬-有機(jī)框架材料(Metal-Organic Frameworks,MOFs)是由金屬離子或者金屬簇合物與有機(jī)配體橋連構(gòu)成的一類新穎的結(jié)晶性多孔固體材料。這類材料一般具有高比表面積、可剪裁性、可功能化、多活性位點等特點,被發(fā)現(xiàn)至今在氣體吸附和儲存、分子分離、熒光傳感、催化、超級電容器、藥物載體或多孔模板等領(lǐng)域都具有極其重要的應(yīng)用價值。MOFs的次級結(jié)構(gòu)單元是金屬氧簇結(jié)構(gòu),能夠表現(xiàn)出類半導(dǎo)體的行為,因而在光催化研究中引起了廣泛興趣。由于MOFs無/少缺陷的晶態(tài)有序結(jié)構(gòu)和多孔特性使其在電子空穴有效分離上具有獨特的優(yōu)勢,理性設(shè)計合成MOFs及其復(fù)合材料在光催化中的應(yīng)用己呈現(xiàn)了非常迷人的前景。以此為突破口,基于MOFs明確且方便調(diào)控的結(jié)構(gòu),對理解光催化反應(yīng)的構(gòu)效關(guān)系、發(fā)展新型多孔光催化劑材料也具有十分重要的意義。本論文在所在實驗室近年來的工作基礎(chǔ)上:包括發(fā)展了 MOFs材料的設(shè)計合成及在有機(jī)催化領(lǐng)域的應(yīng)用,集中闡述了基于MOF復(fù)合和衍生材料對太陽光的增強(qiáng)光吸收,通過理性設(shè)計合成策略促進(jìn)了此類基于MOFs的光催化劑的電荷有效分離,并應(yīng)用于高效光催化分解水產(chǎn)氫領(lǐng)域。通過將金屬納米顆粒與MOFs進(jìn)行復(fù)合,得到新穎的金屬@MOFs的復(fù)合結(jié)構(gòu),這種復(fù)合結(jié)構(gòu)有利于光生電子和空穴的快速轉(zhuǎn)移和分離,促進(jìn)對光生電荷的有效利用,極大的改善了光催化產(chǎn)氫性能。另外,本文還深入探討了形貌和尺寸對所制備的MOF基光催化劑的性能影響。本論文所取得的主要研究成果如下:1.金屬納米顆粒,尤其是鉑(Pt)納米顆粒,被認(rèn)為是特別好的電子受體,因此金屬納米顆粒與MOF的復(fù)合材料一般會顯示出比純MOF更高的光催化性能;贛OF的多孔性不影響質(zhì)子傳輸以及對納米顆粒的限域作用,MOF可以作為理想的模板來研究電子受體位置對光催化性能的影響。我們設(shè)計合成了平均粒徑為3nm的鉑(Pt)納米顆粒,并將其均勻分散在MOF材料UiO-66-NH2的內(nèi)部或表面,分別得到Pt@UiO-66-NH2和Pt/UiO-66-NH2材料,并用于可見光解水制氫的性能研究。與單純的UiO-66-NH2相比較,兩個負(fù)載Pt的復(fù)合材料顯示出明顯提高但顯著不同的光解水制氫性能,表明了 Pt在MOF材料中的相對位置對光催化效率的影響。其中,Pt@UiO-66-NH2極大的縮短了電子傳輸距離,更利于電子-空穴的分離,因此顯現(xiàn)出相對Pt/UiO-66-NH2更高的光催化效率。蘊(yùn)含的催化機(jī)理進(jìn)一步通過超快光譜測試和熒光光譜測試得到揭示。2.設(shè)計合成含有兩種金屬-MOF界面的新型光催化產(chǎn)氫體系,促進(jìn)光生電子流的形成和高效產(chǎn)氫性能。要實現(xiàn)半導(dǎo)體材料高的產(chǎn)氫性能,有兩個特別重要的I要求:一是較寬的光吸收范圍;二是該半導(dǎo)體材料被光激發(fā)產(chǎn)生的光生電子和空穴能得到有效分離并利用;贛OF與Pt納米顆粒的肖特基結(jié)構(gòu)有利于電子傳輸和分離;同時Au和Ag等金屬顆粒具有很好的等離子共振效應(yīng),能實現(xiàn)在可見及近紅外區(qū)的光吸收,將其與MOF復(fù)合可以拓寬MOF的光吸收范圍。而將這種肖特基結(jié)構(gòu)和等離子共振效應(yīng)同時設(shè)計結(jié)合到同一 MOF材料中,將能實現(xiàn)光生電子和空穴的更有效轉(zhuǎn)移和分離,減少光生電子和空穴在體相中的復(fù)合,從而達(dá)到更好的光催化產(chǎn)氫效果。3.選用超高熱穩(wěn)定的MOF材料,MIL-53(A1),作為硬模板,向其孔道中引入各種金屬硝酸鹽,通過高溫煅燒納米刻蝕的辦法成功指引生成多孔金屬氧化物材料。使用該模板法得到的金屬氧化物材料具有高比表面積,并且可大體復(fù)制MOF的孔結(jié)構(gòu)。合成過程中,金屬氧化物可進(jìn)一步轉(zhuǎn)化成金屬硫化物,MOF模板去除后即可得到多級孔道金屬硫化物。相對于傳統(tǒng)的體相的硫化鎘和納米尺寸硫化鎘而言,該方法得到的納米尺寸多級孔道硫化鎘在光催化裂解水產(chǎn)氫反應(yīng)中具有更優(yōu)異的光催化性能。
[Abstract]:Metal-Organic Frameworks (MOFs) is a kind of novel crystalline porous solid material composed of metal ions or metal clusters and organic ligand bridges. These materials generally have high specific surface area, can be tailored, functionalized and multi active sites, and have been found to be adsorbed and stored in gas so far. Molecular separation, fluorescence sensing, catalysis, supercapacitors, drug carriers, or porous templates, which are of great importance to the application of.MOFs, are metal oxygen cluster structures, which can show the behavior of semiconductor like semiconductors, and thus have aroused wide interest in the study of photocatalytic research. Due to the amorphous structure of MOFs with no / less defects, the structure of the crystalline ordered structure has been found. And the porous properties have unique advantages in the effective separation of electron holes. Rational design and synthesis of MOFs and its composites have been very attractive in the application of photocatalysis. Based on the structure of clear and convenient MOFs regulation, the structure of the photocatalytic reaction is understood and the new porous photocatalyst is developed. On the basis of the recent work in the laboratory, this paper includes the development of the design and synthesis of MOFs materials and the application in the field of organic catalysis, focusing on the enhanced optical absorption of solar light based on MOF composite and derivative materials, and through the rational design synthesis strategy to promote this type of MO The charge of Fs's photocatalyst is effectively separated and applied to the field of high efficiency photocatalytic decomposition of aquatic hydrogen. By combining the metal nanoparticles with MOFs, the composite structure of the novel metal @MOFs is obtained. This composite structure is beneficial to the rapid transfer and separation of photoelectron and hole, and the effective use of the photogenerated charge. The properties of photocatalytic hydrogen production are good. Furthermore, the effects of morphology and size on the properties of MOF based photocatalysts are also discussed. The main achievements in this paper are as follows: 1. metal nanoparticles, especially platinum (Pt) nanoparticles, are considered to be a particularly good electron acceptor, so the composite of metal nanoparticles and MOF The material generally shows higher photocatalytic performance than pure MOF. The porosity based on MOF does not affect proton transfer and the confinement effect on the nanoparticles. MOF can be used as an ideal template to study the effect of electron acceptor position on the photocatalytic performance. We designed and synthesized platinum (Pt) nanoparticles with an average particle size of 3nm and divided them evenly. The Pt@UiO-66-NH2 and Pt/UiO-66-NH2 materials were obtained separately on the internal or surface of the MOF material UiO-66-NH2 and used to study the performance of hydrogen production by visible photolysis. Compared with the simple UiO-66-NH2, the two Pt loaded composites showed significantly improved but significantly different photodissociation properties of hydrogen, indicating the relative position of Pt in MOF materials. The effect of Pt@UiO-66-NH2 on the photocatalytic efficiency has greatly shortened the electron transport distance and is more conducive to the separation of electron holes. Therefore, the higher photocatalytic efficiency of the relative Pt/UiO-66-NH2 is revealed. The implication of the catalytic mechanism further reveals that the.2. design and synthesis of two kinds of metals are further revealed by the ultrafast spectral and fluorescence spectra tests. A new type of photocatalytic hydrogen production system at the -MOF interface promotes the formation of optical electron flow and the performance of high hydrogen production. To achieve high hydrogen production performance of semiconductor materials, there are two special important I requirements: one is wide optical absorption range, and two is the effective separation and utilization of photogenerated electrons and holes produced by the semiconductor material by light excitation. The Schottky structure of MOF and Pt nanoparticles is beneficial to the electron transport and separation; meanwhile, the metal particles such as Au and Ag have good plasma resonance effect, and can realize the optical absorption in the visible and near infrared regions. The composite can widen the optical absorption range of MOF with MOF, and the Schottky structure and the plasma resonance effect are designed simultaneously. Combined with the same MOF material, the more effective transfer and separation of photogenerated electrons and holes will be achieved, and the recombination of photogenerated electrons and holes in the body phase can be reduced to achieve better photocatalytic hydrogen production by using the super high thermal stable MOF material, MIL-53 (A1), as a hard mold plate, and the introduction of all kinds of metal nitrate to its channel through high temperature. The method of temperature calcining nano scale etching has successfully guided the formation of porous metal oxide material. The metal oxide material obtained by this template has high specific surface area and can reproduce the pore structure of MOF in general. In the process of synthesis, the metal oxide can be further converted into metal sulfide, and the multistage channel metal can be obtained after the MOF template is removed. Sulfides. Compared with cadmium sulfide and nanoscale cadmium sulfide, the nanoscale multilevel channel cadmium sulfide obtained by this method has better photocatalytic performance in the reaction of photocatalytic cracking of aquatic hydrogen.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O643.36;TQ116.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 左宜,左劍惡,張薇,陳金春;影響厭氧發(fā)酵生物產(chǎn)氫因素的試驗研究[J];中國沼氣;2003年03期
2 馬歡,李建昌,劉士清,張無敵;乙酸對發(fā)酵產(chǎn)氫過程的抑制影響[J];可再生能源;2005年04期
3 葉小梅;Irini Angelidaki;常志州;黃紅英;;糖蜜廢水COD/N對厭氧發(fā)酵產(chǎn)氫的影響[J];可再生能源;2008年06期
4 趙春海;;微生物產(chǎn)氫(能)優(yōu)勢[J];生命科學(xué)儀器;2008年02期
5 張全國;王毅;李剛;周雪花;安靜;;光合細(xì)菌利用葡萄糖產(chǎn)氫過程中菌體衰亡性研究[J];太陽能學(xué)報;2009年06期
6 陽廣鳳;沈李東;金仁村;劉金翠;韋杏花;;發(fā)酵產(chǎn)氫的動力學(xué)模型[J];環(huán)境污染與防治;2011年10期
7 ;大連化物所二氧化鈦表面光催化產(chǎn)氫工作取得新進(jìn)展[J];粘接;2013年08期
8 湯煥毅,李同信,戚奎華,宮瑞章,顧婉貞,顧長立;水-三乙醇胺-氯化銠-2,2′-聯(lián)吡啶-鉑體系光助催化產(chǎn)氫過程的研究[J];催化學(xué)報;1980年02期
9 何云陔;高福;易淑云;王秀華;李樹本;;水溶性卟啉光還原水產(chǎn)氫的研究[J];化學(xué)學(xué)報;1984年06期
10 劉萬生;郭慶;徐晨彪;;我國二氧化鈦表面光催化產(chǎn)氫研究獲進(jìn)展[J];功能材料信息;2013年04期
相關(guān)會議論文 前10條
1 許雙;于天君;曾毅;陳金平;李Z,
本文編號:1822055
本文鏈接:http://sikaile.net/kejilunwen/huagong/1822055.html