天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化工論文 >

粘彈性流體湍流減阻流動(dòng)大渦數(shù)值模擬研究

發(fā)布時(shí)間:2018-04-29 09:18

  本文選題:粘彈性流體 + 大渦數(shù)值模擬; 參考:《哈爾濱工業(yè)大學(xué)》2015年博士論文


【摘要】:將少量柔性長(zhǎng)鏈高分子聚合物或某些表面活性劑加入水或者有機(jī)溶劑中可以明顯減小湍流流動(dòng)中的摩擦阻力,這種現(xiàn)象被稱為添加劑湍流減阻效應(yīng)。為了使這一現(xiàn)象更好地在實(shí)際工業(yè)系統(tǒng)中得到應(yīng)用,亟需對(duì)其流動(dòng)特性和減阻機(jī)理進(jìn)行研究。由于實(shí)驗(yàn)方法不能獲得粘彈性流體湍流減阻流動(dòng)中的分子變形場(chǎng)和彈性應(yīng)力場(chǎng)信息,因而大多采用數(shù)值模擬方法。大渦數(shù)值模擬(LES)因其在相同工況下計(jì)算量小于直接數(shù)值模擬(DNS)、可獲得的信息量比雷諾平均數(shù)值模擬(RANS)多而備受關(guān)注。應(yīng)用LES研究特定湍流流動(dòng)時(shí),關(guān)鍵在于所選用的亞格子模型是否適用于該種湍流流動(dòng),幾乎所有已發(fā)表的亞格子模型只針對(duì)于牛頓流體湍流流動(dòng),而粘彈性流體湍流減阻流動(dòng)LES研究剛剛起步,目前只有應(yīng)用時(shí)間近似解卷積模型(TADM)嘗試對(duì)粘彈性流體湍流減阻流動(dòng)進(jìn)行數(shù)值模擬。為了更好地應(yīng)用LES研究粘彈性流體湍流減阻流動(dòng),需開(kāi)發(fā)更多可靠、有效的亞格子模型。本文將從這一角度出發(fā),結(jié)合粘彈性流體湍流減阻機(jī)理,構(gòu)建針對(duì)粘彈性流體湍流減阻流動(dòng)的新型亞格子模型,這對(duì)粘彈性流體湍流減阻流動(dòng)LES研究有重要的理論意義和學(xué)術(shù)價(jià)值。從粘彈性流體湍流減阻機(jī)理的角度出發(fā),基于反映粘彈性效應(yīng)對(duì)湍流相干結(jié)構(gòu)影響的思想,創(chuàng)新性地建立了耦合空間過(guò)濾和時(shí)間過(guò)濾的新型亞格子模型,命名為MCT (Mixed subgrid-scale model based on Coherent structures and Temporal approximate deconvolution)。選用粘彈性流體強(qiáng)迫各向同性湍流和槽道湍流作為驗(yàn)證對(duì)象,將低雷諾數(shù)(Re)下兩種湍流流動(dòng)的LES結(jié)果與對(duì)應(yīng)的DNS結(jié)果進(jìn)行比較,同時(shí)將較高Re下的LES槽道湍流結(jié)果與實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比,結(jié)果表明本文所提出的MCT亞格子模型能夠預(yù)測(cè)無(wú)壁面效應(yīng)和有壁面效應(yīng)的粘彈性流體湍流減阻流動(dòng),達(dá)到了本文的預(yù)期目的。在采用MCT和TADM亞格子模型數(shù)值模擬較高Re下的粘彈性流體強(qiáng)迫各向同性湍流時(shí),發(fā)現(xiàn)TADM亞格子模型表現(xiàn)出過(guò)度耗散,而MCT亞格子模型并無(wú)此現(xiàn)象,表明MCT亞格子模型在計(jì)算較高Re下的湍流減阻流動(dòng)方面具有優(yōu)越性,這為L(zhǎng)ES研究高Re下粘彈性流體湍流減阻流動(dòng)奠定了基礎(chǔ)。采用MCT亞格子模型建立了較高Re下的粘彈性流體強(qiáng)迫各向同性湍流的LES數(shù)據(jù)庫(kù),并分析了其流動(dòng)特性。結(jié)果表明粘彈性的存在明顯改變了湍流的流動(dòng)特性,渦量和擬渦能明顯減小,小尺度渦結(jié)構(gòu)數(shù)目明顯減少,隨著粘彈性效應(yīng)的增強(qiáng)減阻率增大且粘彈性流體分子拉伸更為劇烈。同時(shí),采用一維和二維小波變換進(jìn)一步探究粘彈性效應(yīng)對(duì)湍流多尺度特性的影響,發(fā)現(xiàn)湍流流動(dòng)中的間歇性隨著尺度的減小而增強(qiáng),在粘彈性流體中不僅整個(gè)流動(dòng)區(qū)域的渦結(jié)構(gòu)以及間歇性受到抑制,而且局部渦結(jié)構(gòu)對(duì)間歇性的貢獻(xiàn)減弱。采用MCT亞格子模型對(duì)較高Re下的粘彈性流體槽道湍流進(jìn)行數(shù)值模擬,建立了較高Re下的LES數(shù)據(jù)庫(kù),并結(jié)合槽道湍流實(shí)驗(yàn)數(shù)據(jù)庫(kù)分析其流動(dòng)特性及減阻機(jī)理。結(jié)果表明在粘彈性流體中平均速度場(chǎng)、湍流脈動(dòng)強(qiáng)度、雷諾剪切應(yīng)力、低速條帶結(jié)構(gòu)等均發(fā)生變化,且粘彈性流體中的過(guò)渡層有向主流區(qū)擴(kuò)展的趨勢(shì)。根據(jù)湍流流動(dòng)阻力貢獻(xiàn)、湍動(dòng)能貢獻(xiàn)、基于小波變換的標(biāo)度律以及間歇性的結(jié)果,很好地解釋了粘彈性流體湍流減阻機(jī)理。從整體角度出發(fā),粘彈性流體中湍流貢獻(xiàn)的減小程度比引入的粘彈性貢獻(xiàn)大,從而使湍流流動(dòng)的摩擦系數(shù)減小,進(jìn)而產(chǎn)生減阻效果;從粘彈性效應(yīng)對(duì)壁面法向不同區(qū)域的影響角度出發(fā),粘彈性效應(yīng)主要抑制了過(guò)渡層中從線性底層由湍流猝發(fā)事件引起的上拋運(yùn)動(dòng)而來(lái)的相干結(jié)構(gòu)。
[Abstract]:A small amount of flexible long chain polymer or some surfactants can be added to the water or organic solvent to reduce the friction resistance in the turbulent flow. This phenomenon is called the additive turbulent drag reduction effect. In order to make this phenomenon better applied in the actual industrial system, it is urgent to study the flow characteristics and the mechanism of drag reduction. Because the experimental method can not obtain the information of the molecular deformation field and the elastic stress field in the viscoelastic fluid turbulent drag reduction flow, the numerical simulation method is mostly used. The large eddy numerical simulation (LES) can obtain more information than the Reynolds mean numerical simulation (RANS) because its calculation is less than the direct numerical simulation (DNS) under the same working condition. When LES is used to study specific turbulent flow, the key lies in whether the selected subgrid model is suitable for this kind of turbulent flow. Almost all published subgrid models are only for Newton fluid flow, and the viscous elastic fluid turbulent drag reduction flow LES is just starting. At present, only the application time is approximate. The product model (TADM) is used to simulate the turbulent drag flow in viscoelastic fluid. In order to better use LES to study the turbulent drag reduction flow in viscoelastic fluid, more reliable and effective subgrid models are needed. This paper will build a viscoelastic fluid turbulence drag reduction mechanism and build a viscoelastic fluid turbulence drag reduction mechanism from this angle. The new subgrid model of flow has important theoretical significance and academic value for the LES study of viscoelastic fluid turbulence drag reduction flow. From the angle of the mechanism of viscoelastic fluid turbulence drag reduction, based on the thought of the influence of viscoelastic effect on the coherent structure of turbulence, a new type of coupling space filtering and time filtering is innovatively established. The subgrid model, named MCT (Mixed subgrid-scale model based on Coherent structures and Temporal approximate deconvolution). Using the viscoelastic fluid forced isotropic turbulence and channel turbulence as the verification object, the results of the two turbulent flow under the low Reynolds number are compared with the corresponding results. The results of LES channel turbulence under higher Re are compared with the experimental results. The results show that the proposed MCT subgrid model can predict the viscoelastic fluid turbulent drag reduction flow without wall surface effect and wall effect. The viscoelastic fluid under higher Re is simulated with MCT and TADM sublattice model. In forcing isotropic turbulence, it is found that the TADM subgrid model shows excessive dissipation, while the MCT subgrid model does not have this phenomenon. It shows that the MCT subgrid model has advantages in calculating the turbulent drag reduction flow under higher Re, which lays the foundation for the LES study of the viscous elastic fluid turbulent drag reduction flow under high Re. The construction of the MCT subgrid model is built. The LES database of viscoelastic fluid forced isotropic turbulence under high Re is established and its flow characteristics are analyzed. The results show that the existence of viscoelasticity obviously changes the flow characteristics of turbulence, the vorticity and quasi vorticity energy decrease obviously, the number of small scale vortex structure decreases obviously, and the viscoelastic flow increases with the increase of the viscoelastic effect and the viscoelastic flow is increased. At the same time, the effect of viscoelastic effect on the multiscale characteristics of turbulence is further investigated by using one and two dimensional wavelet transform. It is found that the intermittency in the turbulent flow is enhanced with the decrease of the scale. In the viscoelastic fluid, the vortex structure and the intermittency of the whole flow area are suppressed, and the local vorticity is also found. The MCT subgrid model is used to simulate the turbulent flow in the viscoelastic fluid channel under high Re, and the LES database under the higher Re is established. The flow characteristics and the drag reduction mechanism are analyzed with the experimental database of the channel turbulence. The results show that the mean velocity field, the turbulence pulsation intensity, and the thunder in the viscoelastic fluid The shear stress, the low velocity strip structure and so on all change, and the transition layer in the viscoelastic fluid has the tendency to expand to the main stream. According to the contribution of the turbulent flow resistance, the contribution of the turbulent kinetic energy, the scaling law of the wavelet transform and the intermittent results, the drag reduction mechanism of the viscoelastic fluid turbulence is well explained. From the whole point of view, the viscoelasticity of the viscoelastic fluid is explained. The reduction of turbulence contribution in the fluid is larger than the viscoelastic contribution introduced, which reduces the friction coefficient of the turbulent flow and then produces the effect of drag reduction. From the angle of the effect of the viscoelastic effect to the different regions of the wall, the viscoelastic effect mainly inhibits the upper layer of the transition layer caused by the turbulent burst event in the linear layer. A coherent structure that throws motion.

【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ021.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 江體乾,A.B.Metzner;壁滑移對(duì)粘彈性流體在小流道內(nèi)流動(dòng)的影響[J];華東化工學(xué)院學(xué)報(bào);1987年04期

2 周曉君;劉高;喬春德;夏麟;陳紅;;剪切波在線性粘彈性流體中的傳播[J];湖北大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期

3 顧培韻,潘勤敏,孫建中,趙福祥;粘彈性流體流變特性的研究[J];浙江大學(xué)學(xué)報(bào)(自然科學(xué)版);1994年01期

4 王凱;粘彈性流體在槽式反應(yīng)器中的流動(dòng)、功耗和混合[J];合成橡膠工業(yè);1992年01期

5 王凱,朱秀林,潘祖仁;錨式攪拌槽中高粘彈性流體的流速分布及其功率消耗[J];化工學(xué)報(bào);1989年06期

6 李兆敏;粘彈性流體在圓管中起動(dòng)流動(dòng)的規(guī)律[J];石油大學(xué)學(xué)報(bào)(自然科學(xué)版);1997年06期

7 潘勤敏,顧培韻,趙福祥,孫建中,潘祖仁;表面更新釜中粘彈性流體的脫揮特性測(cè)定[J];高;瘜W(xué)工程學(xué)報(bào);1990年03期

8 朱秀林,王凱,潘祖仁;攪拌槽中粘彈性流體的流速分布[J];合成橡膠工業(yè);1988年05期

9 尹洪軍,鐘會(huì)影,王洪濤,崔雅桂;擴(kuò)張流道內(nèi)修正上隨體MaxweⅡ粘彈性流體的流動(dòng)[J];特種油氣藏;2005年04期

10 袁謀,李兆敏,王淵,劉成文,劉嘉;流體的粘彈性對(duì)周期性圓管層流流動(dòng)規(guī)律的影響[J];石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年05期

相關(guān)會(huì)議論文 前6條

1 牛小靜;余錫平;;粘彈性流體周期性運(yùn)動(dòng)規(guī)律的探討[A];第七屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第十九屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集(上冊(cè))[C];2005年

2 宣岸卿;李芳;尹協(xié)振;;粘彈性流體的后臺(tái)階流動(dòng)[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年

3 楊迪;胡開(kāi)鑫;朱克勤;;粘彈性流體分?jǐn)?shù)元模型研究[A];北京力學(xué)會(huì)第14屆學(xué)術(shù)年會(huì)論文集[C];2008年

4 林藝揚(yáng);韓雪;黃建濱;;一類具有pH響應(yīng)的粘彈性流體[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)膠體與界面化學(xué)分會(huì)場(chǎng)論文集[C];2008年

5 朱克勤;楊迪;胡開(kāi)鑫;;粘彈性流體的分?jǐn)?shù)元模型及圓管起動(dòng)流[A];第十屆全國(guó)環(huán)境與工業(yè)流體力學(xué)會(huì)議論文集[C];2007年

6 喬燕;林藝揚(yáng);黃建濱;;金屬離子誘導(dǎo)陰離子/兩性離子表面活性劑體系形成粘彈性流體[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)膠體與界面化學(xué)分會(huì)場(chǎng)論文集[C];2008年

相關(guān)博士學(xué)位論文 前4條

1 王璐;粘彈性流體湍流減阻流動(dòng)大渦數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2015年

2 李小斌;粘彈性流體微尺度流動(dòng)特性研究[D];哈爾濱工業(yè)大學(xué);2012年

3 蔡偉華;粘彈性流體各向同性湍流特性研究[D];哈爾濱工業(yè)大學(xué);2011年

4 錢建禎;粘彈性流體力學(xué)Oldroyd模型的數(shù)學(xué)理論[D];北京大學(xué);2011年

相關(guān)碩士學(xué)位論文 前10條

1 周文武;粘彈性流體基納米流體導(dǎo)熱系數(shù)與粘度研究[D];哈爾濱工業(yè)大學(xué);2012年

2 徐鴻鵬;粘彈性流體基納米流體流變學(xué)物性研究[D];哈爾濱工業(yè)大學(xué);2013年

3 曹陽(yáng);粘彈性流體微通道流動(dòng)特性及其強(qiáng)化混合應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2011年

4 王璐;粘彈性流體強(qiáng)迫各向同性湍流大渦數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2012年

5 鄭智穎;FLUENT在粘彈性流體流動(dòng)數(shù)值模擬中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2013年

6 陳靜;SPH加速粘彈性流體的實(shí)時(shí)模擬方法[D];燕山大學(xué);2013年

7 韓山華;粘彈性流體的SUPG-CBB有限元法[D];四川大學(xué);2002年

8 李東陽(yáng);粘彈性流體基納米流體湍流對(duì)流換熱直接數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2012年

9 韋同舟;粘彈性流體振蕩網(wǎng)格湍流PIV實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2014年

10 陽(yáng)倦成;粘彈性流體Taylor-Couette流動(dòng)不穩(wěn)定現(xiàn)象研究[D];哈爾濱工業(yè)大學(xué);2010年

,

本文編號(hào):1819319

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1819319.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3b3fe***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
中文字幕日韩无套内射| 美女被后入视频在线观看| 亚洲中文字幕人妻av| 欧美一区二区三区99| 国产高清在线不卡一区| 欧美同性视频免费观看| 欧美大胆美女a级视频| 国产情侣激情在线对白| 成人国产激情福利久久| 日本一本在线免费福利| 一二区中文字幕在线观看| 国产日韩熟女中文字幕| 成人午夜爽爽爽免费视频| 冬爱琴音一区二区中文字幕| 日韩中文字幕免费在线视频| 男女一进一出午夜视频| 沐浴偷拍一区二区视频| 日本丁香婷婷欧美激情| 精品一区二区三区乱码中文| 亚洲最新一区二区三区| 国产欧美日本在线播放| 超薄肉色丝袜脚一区二区| 中国一区二区三区不卡| 国产又粗又猛又大爽又黄同志| 午夜传媒视频免费在线观看| 色婷婷国产精品视频一区二区保健 | 国产av熟女一区二区三区蜜桃| 初尝人妻少妇中文字幕在线| 国产日产欧美精品视频| 久热在线视频这里只有精品| 精品al亚洲麻豆一区| 日韩成人高清免费在线| 99亚洲综合精品成人网色播 | 日韩精品在线观看一区| 日本高清不卡一二三区| 99国产高清不卡视频| 国产欧美韩日一区二区三区| 精品香蕉一区二区在线| 色婷婷在线视频免费播放| 欧美精品在线播放一区二区| 国产小青蛙全集免费看|