氮氧雙摻雜介孔碳材料用作鋰空氣電池正極催化劑的研究
本文選題:鋰空氣電池 + 模板法。 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:現(xiàn)代社會(huì)對(duì)高能量密度儲(chǔ)能設(shè)備的需求越來(lái)越強(qiáng)烈,因而具有極高理論能量密度的有機(jī)體系鋰空氣吸引了研究人員的的廣泛關(guān)注。然而,要實(shí)現(xiàn)這種高能密度儲(chǔ)能設(shè)備的實(shí)際應(yīng)用,尚有很多問(wèn)題需要解決。總體來(lái)說(shuō),目前鋰空氣電池面臨著能量效率低、負(fù)反應(yīng)嚴(yán)重、循環(huán)性能差等各種不足,針對(duì)這些問(wèn)題和挑戰(zhàn),本論文從正極材料的設(shè)計(jì)和優(yōu)化入手,探究了材料的結(jié)構(gòu)特征和表面化學(xué)特性對(duì)電池性能的影響,并通過(guò)研究RuO_2/碳復(fù)合材料催化劑的電化學(xué)特性,明確了碳基體材料在高催化活性復(fù)合材料中的重要作用,并最終獲得了一種能量效率高、循環(huán)壽命長(zhǎng)的鋰空氣電池正極材料。首先以富含氮元素的三聚氰胺和甲醛作碳源,以不同質(zhì)量的納米SiO_2(Aerosil-200)做硬模板,采用水熱聚合以及后續(xù)的高溫煅燒獲得了N、O雙摻雜的單模板介孔碳泡沫材料。當(dāng)三聚氰胺和SiO_2的質(zhì)量比為7:4時(shí)獲得的MCF-H7樣本具有最高的比表(1028 m2 g-1)和最大的孔容(2.577 cm3 g-1)。電池測(cè)試結(jié)果顯示,高比表、大孔容有利于電池獲得高的放電比容量和好的氧還原反應(yīng)(ORR)和氧析出反應(yīng)(OER)催化活性,最終MCF-H7電極在100 m A g-1的電流密度下獲得了高達(dá)13100 m Ah g-1的放電容量和低至1.08 V的充放電電壓差,優(yōu)于商業(yè)碳黑Super P的4600 m Ah g-1和1.55 V。在單模板介孔碳材料MCF-H7的基礎(chǔ)上進(jìn)一步引入不同質(zhì)量的F127軟模板劑,制備雙模板介孔碳泡沫材料。電池測(cè)試結(jié)果顯示MCF-H7-S2.5樣本具有最佳的綜合性能,其在保持材料具有較高比容量和ORR/OER催化活性的同時(shí)還具有較好的循環(huán)性能。最終,在200 m A g-1電流密度并限定500 m Ah g-1的放電比容量下能穩(wěn)定循環(huán)25圈,高于單模板介孔碳泡沫樣本MCF-H7的15圈。針對(duì)MCF-H7和MCF-H7-S2.5兩種材料在電池性能上表現(xiàn)出來(lái)的差異,本論文從材料的結(jié)構(gòu)特性和表面化學(xué)特性分析了其原因。結(jié)果表明,碳材料中高的O原子摻雜有利于電池獲得更好的ORR和OER催化活性,但同時(shí)也會(huì)導(dǎo)致材料的循環(huán)性能較差;而低O高N的表面化學(xué)特性使材料保持一定的催化活性外,還能更好的抑制負(fù)反應(yīng)的發(fā)生,從而提升材料的循環(huán)性能。該結(jié)果表明,同調(diào)控碳材料的結(jié)構(gòu)特征一樣,合理優(yōu)化材料的表面化學(xué)特性也是改善碳材料電化學(xué)性能的有效手段。最后,以合成的介孔碳泡沫為基礎(chǔ),通過(guò)水熱反應(yīng)制備了RuO_2/碳復(fù)合材料。電池測(cè)試結(jié)果顯示,在200 m A g-1的電流密度下復(fù)合材料顯示出低至1.02 V的充放電過(guò)電勢(shì)。在400 m A g-1的電流密度并限定放電比容量為500 m Ah g-1條件下進(jìn)行循環(huán)性能測(cè)試,RuO_2/MCF-H7電極能穩(wěn)定循環(huán)102圈,RuO_2/MCF-H7-S2.5電極則更是達(dá)到了160圈,該結(jié)果一方面顯示了復(fù)合材料優(yōu)越的電化學(xué)性能;另一方面也說(shuō)明即使負(fù)載了高活性的電催化劑,碳基材料的性質(zhì)仍然對(duì)鋰空氣電池性能有重要影響。
[Abstract]:In modern society, the demand for high energy density energy storage equipment is more and more intense, so lithium air with extremely high theoretical energy density has attracted extensive attention of researchers. However, there are still many problems to be solved to realize the practical application of this kind of high energy density energy storage equipment. Generally speaking, the lithium air battery is faced with many disadvantages, such as low energy efficiency, serious negative reaction, poor cycle performance and so on. In view of these problems and challenges, this paper starts with the design and optimization of cathode materials. The effects of the structure and surface chemical properties of the materials on the performance of the battery were investigated. The important role of the carbon matrix materials in the high catalytic activity composites was clarified by studying the electrochemical characteristics of the RuO_2/ carbon composite catalysts. Finally, a lithium air battery cathode material with high energy efficiency and long cycle life is obtained. Firstly, using nitrogen-rich melamine and formaldehyde as carbon source and different quality nano-SiO2Aerosil-200) as hard template, the single template mesoporous carbon foams doped with Nano O were obtained by hydrothermal polymerization and subsequent calcination at high temperature. When the mass ratio of melamine to SiO_2 is 7:4, the MCF-H7 samples obtained have the highest specific ratio of 1028 m ~ 2 g ~ (-1) and the maximum pore volume of 2.577 cm3 g ~ (-1). The results of the battery test showed that the high ratio meter and large pore volume were beneficial to obtain high discharge specific capacity and good catalytic activity of oxygen reduction reaction ORR and oxygen precipitation reaction. At the current density of 100mAg-1, the discharge capacity of the final MCF-H7 electrode was up to 13100 mAh g-1 and the charge-discharge voltage difference was as low as 1.08V, which was better than that of commercial carbon black Super P (4600 mAh g-1) and commercial carbon black (Super P) (4600 mAh g-1 and 1.55V). Based on the single template mesoporous carbon material (MCF-H7), the double template mesoporous carbon foams were prepared by introducing F127 soft template with different quality. The results of battery test showed that the MCF-H7-S2.5 sample had the best comprehensive performance, which kept the material with high specific capacity and catalytic activity of ORR/OER, and had good cycling performance at the same time. Finally, at the current density of 200mAg-1 and the specific discharge capacity of 500mAh g-1, the cycle can be stabilized for 25 cycles, which is higher than that of MCF-H7 of single template mesoporous carbon foam sample. In view of the difference between MCF-H7 and MCF-H7-S2.5 in battery performance, this paper analyzes the reasons from the structural characteristics and surface chemical characteristics of the materials. The results show that the high O atom doping in carbon materials is beneficial to obtain better catalytic activity of ORR and OER, but it also leads to poor cycling performance of the materials, while the surface chemical properties of low O and high N make the materials keep a certain catalytic activity. Can also better inhibit the occurrence of negative reactions, thereby improving the cycling performance of materials. The results show that the optimization of the surface chemical properties of carbon materials is also an effective means to improve the electrochemical properties of carbon materials as well as regulating the structural characteristics of carbon materials. Finally, based on the synthesized mesoporous carbon foam, RuO_2/ carbon composites were prepared by hydrothermal reaction. The results of the battery test show that the composite shows a charge-discharge overpotential of as low as 1.02 V at the current density of 200 mg ~ (-1). Under the condition of current density of 400mAg-1 and limited discharge capacity of 500mAh g-1, the cycle performance of Ruo 20 / MCF-H7 electrode can stabilize 102 cycles and Ruo / MCF-H7-S2.5 electrode reaches 160 cycles. On the one hand, the results show that the composite has excellent electrochemical performance, and on the other hand, the properties of carbon-based materials still have an important effect on the performance of lithium-air batteries even if the electrocatalysts are loaded with high activity.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM911.41
【相似文獻(xiàn)】
相關(guān)博士學(xué)位論文 前8條
1 馬全新;鋰離子電池富鋰錳基正極材料與電極制備及改性研究[D];哈爾濱工業(yè)大學(xué);2017年
2 冀轉(zhuǎn);過(guò)渡金屬六氰配合物作為二次電池正極材料的應(yīng)用研究[D];中國(guó)地質(zhì)大學(xué);2017年
3 王星博;鋰離子電池富鋰正極材料的結(jié)構(gòu)表征與電化學(xué)性能研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
4 閔秀娟;磷酸釩鋰基正極材料的結(jié)構(gòu)與循環(huán)穩(wěn)定性研究[D];哈爾濱工業(yè)大學(xué);2017年
5 高鵬;鋰離子電池富鋰三元正極材料Li_(1+x)(NiCoMn)_yO_2的合成與性能研究[D];哈爾濱工業(yè)大學(xué);2016年
6 胡思江;核殼結(jié)構(gòu)富鋰錳基層狀正極材料的研究[D];中國(guó)地質(zhì)大學(xué);2015年
7 申永強(qiáng);鐵基氟化物作為鋰/鈉離子電池正極材料的制備及性能研究[D];湘潭大學(xué);2016年
8 牛玉斌;聚陰離子電極材料的制備及其儲(chǔ)鈉行為研究[D];西南大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 歐陽(yáng)爵;氮氧雙摻雜介孔碳材料用作鋰空氣電池正極催化劑的研究[D];哈爾濱工業(yè)大學(xué);2017年
2 王曉艷;釩酸鈉與鐵氰化鐵鈉離子電池正極材料的合成及性能研究[D];合肥工業(yè)大學(xué);2017年
3 解二娟;鋰離子電池LiNi_xCo_yMn_zO_2正極材料的成分、合成工藝和納米銅摻雜研究[D];廣西大學(xué);2017年
4 羅垂意;無(wú)鈷鎳基正極材料理論計(jì)算與實(shí)驗(yàn)改性研究[D];江西理工大學(xué);2017年
5 楊濤;硫化鋰正極材料的制備及電化學(xué)性能[D];浙江大學(xué);2017年
6 徐蓮花;磷酸釩鋰正極材料的制備及其性能研究[D];安徽工業(yè)大學(xué);2017年
7 鐘國(guó)兵;鋰離子電池銅基正極材料的研究[D];上海應(yīng)用技術(shù)大學(xué);2017年
8 史夢(mèng)姣;鋰硫電池正極材料的制備及結(jié)構(gòu)設(shè)計(jì)[D];河南師范大學(xué);2017年
9 張益嘉;錳基正極材料的制備及儲(chǔ)鋰性能研究[D];河南師范大學(xué);2017年
10 孫宇;鋰硫電池正極硫/碳微球復(fù)合材料的制備及改性研究[D];東北師范大學(xué);2017年
,本文編號(hào):1815341
本文鏈接:http://sikaile.net/kejilunwen/huagong/1815341.html