硅納米線太赫茲波調(diào)控技術(shù)
本文選題:太赫茲波 + 硅納米線 ; 參考:《電子科技大學》2017年碩士論文
【摘要】:太赫茲輻射(T-rays)逐漸成為高科技領(lǐng)域中的研究熱點,與其相關(guān)的產(chǎn)生、發(fā)射、接收、探測以及調(diào)控設備都有了很大進步,T-rays已經(jīng)成為人類對物質(zhì)世界進行認知的一項有利工具。對T-rays調(diào)控技術(shù)的研究是使用這項工具的基礎(chǔ)和前提。太赫茲(THz)頻段在紫外光之下,其光子能量為1-100meV,不足以使物質(zhì)發(fā)生電離,因此T-rays具有非電離、非破壞特性。這些特點使得T-rays技術(shù)得到了快速發(fā)展和廣泛應用,從生化光譜學、天文學和納米材料科學等基礎(chǔ)科學,到環(huán)境科學、醫(yī)療衛(wèi)生、農(nóng)業(yè)和安全等應用領(lǐng)域。其中,THz成像是T-rays技術(shù)最具潛力和最具商業(yè)價值的應用領(lǐng)域。在THz成像系統(tǒng)中,空間太赫茲波調(diào)制器在很大程度上影響著成像質(zhì)量和成像速率,但相關(guān)制作材料的缺乏是影響其性能的關(guān)鍵因素。本文將目光投向了在可見光波段具有良好減反性能的硅納米線(SiNW),研究其與T-rays的相互作用,以及在激光作用下對T-rays的調(diào)控能力。首先運用THz時域光譜測試平臺測試了高阻硅片(HR-Si)及不同長度SiNW的時域譜,證明了SiNW對T-rays有增透作用,而且增透作用與SiNW的長度成正比。結(jié)合時域譜所對應的頻域譜及透射率變化情況,得出了915nm激光作用下,2.5μm SiNW的調(diào)制效果最佳;808nm激光作用下,1μm SiNW的調(diào)制效果最佳,900mW下THz波的透射率從不加激光時的70%下降到10%以下。其次,在連續(xù)THz波譜測試平臺上測試了HR-Si及不同長度SiNW在0.34THz下的THz波透射譜,915nm激光時,900mW下最大調(diào)制深度MD5μm=38.8%;808nm激光作用下,900mW時最大調(diào)制深度MD2.5μm=53.7%,相同激光功率作用下,808nm激光的調(diào)制作用更明顯。通過對調(diào)制深度與SiNW長度關(guān)系的分析,認為不同長度SiNW上光生載流子的分布位置是其非線性關(guān)系的決定因素。最后,對SiNW建立起了單層與九層膜系,發(fā)現(xiàn)九層膜系按照傳輸矩陣理論計算出來的反射率與實驗結(jié)果更加吻合。
[Abstract]:Terahertz radiation T-rays (T-rays) has gradually become a research hotspot in the field of high technology, and its related production, emission, reception, detection and control equipment have made great progress. T-rays have become a favorable tool for human cognition of the material world. The research of T-rays control technology is the foundation and premise of using this tool. Terahertz (THz) band is under ultraviolet light, and its photon energy is 1-100meV, which is not enough to ionize the matter. Therefore, T-rays has the characteristics of non-ionization and non-destruction. These characteristics have led to the rapid development and wide application of T-rays technology, ranging from basic sciences such as biochemical spectroscopy, astronomy and nanomaterials science to environmental science, health care, agriculture and safety. THz imaging is one of the most promising and commercial applications of T-rays technology. In THz imaging system, space terahertz wave modulator greatly affects the imaging quality and imaging rate, but the lack of related materials is the key factor to affect its performance. In this paper, we focus on Si nanowires with good anti-reflection performance in the visible light band, and study their interaction with T-rays and their ability to regulate T-rays under laser action. The time domain spectra of HR-Si) and SiNW of different lengths were measured by THz time-domain spectroscopy. It is proved that SiNW has antireflective effect on T-rays, and the antireflection effect is proportional to the length of SiNW. According to the frequency domain spectrum and the transmissivity change of time domain spectrum, the optimal modulation effect of 2.5 渭 m SiNW under the action of 915nm laser is obtained. The best modulation effect of 1 渭 m SiNW under the action of 915nm laser is obtained. The transmittance of THz wave decreases from 70% to less than 10% when the laser is not added. Secondly, The maximum modulation depth (MD5 渭 m) of HR-Si and SiNW with different lengths under 0.34THz 915nm laser at 915mW was measured on a continuous THz spectrum test platform. The maximum modulation depth at 808nm laser was 38.8nm and the maximum modulation depth of MD2.5 渭 mW was 53.7nm. The maximum modulation depth of 808nm laser under the same laser power was measured. The modulation effect is more obvious. Based on the analysis of the relationship between modulation depth and SiNW length, it is considered that the distribution of photogenerated carriers on SiNW with different lengths is the decisive factor of its nonlinear relationship. Finally, the monolayer and nine-layer systems are established for SiNW, and it is found that the reflectivity calculated by the nine-layer system according to the transfer matrix theory is in better agreement with the experimental results.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ127.2;TB383.1
【參考文獻】
相關(guān)期刊論文 前6條
1 劉莉;曹陽;賀軍輝;楊巧文;;硅納米線陣列的制備及其光電應用[J];化學進展;2013年Z1期
2 王云華;薄報學;;無損耗型及損耗型分布布拉格反射鏡光學特性的傳輸矩陣理論分析及優(yōu)化(英文)[J];發(fā)光學報;2013年02期
3 梁磊;徐琴芳;忽滿利;孫浩;向光華;周利斌;;晶體硅太陽電池表面納米線陣列減反射特性研究[J];物理學報;2013年03期
4 宋麗軍;陳鶴鳴;趙新彥;汪靜麗;;光子晶體直接耦合結(jié)構(gòu)雙波長THz波調(diào)制器[J];光通信研究;2012年04期
5 劉盛綱;鐘任斌;;太赫茲科學技術(shù)及其應用的新發(fā)展[J];電子科技大學學報;2009年05期
6 Bradley Ferguson,張希成;太赫茲科學與技術(shù)研究回顧[J];物理;2003年05期
相關(guān)博士學位論文 前1條
1 潘曹峰;硅和Nafion納米線的制備及其在納米能源中的應用[D];清華大學;2010年
相關(guān)碩士學位論文 前3條
1 田偉;硅基全光控太赫茲波幅度調(diào)制器的研究[D];電子科技大學;2015年
2 孫丹丹;太赫茲波調(diào)控技術(shù)及相關(guān)功能器件研究[D];電子科技大學;2013年
3 謝衛(wèi)強;硅納米線的制備及其光學性質(zhì)的研究[D];上海交通大學;2011年
,本文編號:1799329
本文鏈接:http://sikaile.net/kejilunwen/huagong/1799329.html