天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化工論文 >

管式固體氧化物燃料電池的相轉(zhuǎn)化制備與抗積碳研究

發(fā)布時間:2018-04-25 01:33

  本文選題:固體氧化物燃料電池 + 相轉(zhuǎn)化; 參考:《中國礦業(yè)大學(xué)(北京)》2017年博士論文


【摘要】:經(jīng)濟(jì)社會的快速發(fā)展對能源的需求不斷增長,同時對環(huán)境的保護(hù)也更加重視。盡管近幾十年來,水電、風(fēng)電、太陽能等清潔能源發(fā)展迅速,但是目前世界能源供應(yīng)仍以化石能源為主。為同時滿足能源需求和環(huán)境保護(hù),不僅要加快清潔可再生能源的發(fā)展,同時更要提高現(xiàn)有的化石能源的利用效率。固體氧化物燃料電池(Solid oxide fuel cell,SOFC)是一種在中高溫下將蘊(yùn)含在燃料氣中化學(xué)能不經(jīng)燃燒而直接轉(zhuǎn)化為電能的能源轉(zhuǎn)化技術(shù),具有效率高、噪聲低、燃料靈活等優(yōu)點(diǎn),具有很大的應(yīng)用前景。盡管如此,關(guān)鍵材料和制備工藝的高成本限制了SOFC技術(shù)的推廣應(yīng)用。因此,在現(xiàn)有的可靠的材料體系基礎(chǔ)上開展低成本的電池制備工藝研究很有必要。此外,盡管理論上SOFC對燃料氣的要求比較靈活,可以使用質(zhì)子交換膜燃料電池等無法使用的碳?xì)浠衔餅槿剂?但是目前廣泛使用的陽極材料在碳基燃料中的穩(wěn)定性遠(yuǎn)遠(yuǎn)無法滿足應(yīng)用的要求。針對上述問題,本文以廉價(jià)的、目前最可靠的材料體系為基礎(chǔ),基于低成本、工藝簡單的相轉(zhuǎn)化法和共燒技術(shù)制備了多種管式SOFC,發(fā)展了新的電極優(yōu)化工藝,探究了甲烷在陽極鎳催化劑上的轉(zhuǎn)化過程,為抗積碳研究提供了重要的理論基礎(chǔ)。論文第三章發(fā)展了一種新的陽極改性方法——相轉(zhuǎn)化浸漬法,在Ni-YSZ支撐管孔道內(nèi)壁成功浸漬了納米Fe、Ni和BaO,并研究了陽極改性對電池性能和穩(wěn)定性的影響。與傳統(tǒng)的相轉(zhuǎn)化工藝不同,相轉(zhuǎn)化浸漬法采用催化劑前驅(qū)體溶液為凝固浴。研究發(fā)現(xiàn),采用相轉(zhuǎn)化浸漬法制備NiO-YSZ陽極支撐管過程中,溶解在水中的催化劑前軀體可以在溶劑NMP和非溶劑水的相互擴(kuò)散的驅(qū)動力下,分散到支撐體的各個部位,一步即可得到具有納米催化劑的陽極支撐體。在800 oC下以濕氫為燃料時,浸漬Fe和浸漬Ni的Ni-YSZ陽極支撐管式SOFC的峰值功率密度分別提高到了0.40和0.48 W cm-2,以濕甲烷為燃料時峰值功率密度分別提高到了0.37和0.45 W cm-2。浸漬BaO的Ni-YSZ陽極支撐管式SOFC的峰值功率密度相對于未改性的電池性能有所下降,但甲烷下運(yùn)行的穩(wěn)定性大大提高,800 oC高溫下運(yùn)行100 h后電壓僅衰減了0.17 V。本研究提出的相轉(zhuǎn)化浸漬法相對于傳統(tǒng)的浸漬法簡化了工藝流程,提高了浸漬效率,具有很好的推廣應(yīng)用前景。論文第四章基于第一性原理計(jì)算研究了甲烷在SOFC陽極上與鎳催化劑之間的相互作用及甲烷在鎳催化劑上的轉(zhuǎn)化過程。通過對比各個基元步驟的活化能,沿著含碳中間體的轉(zhuǎn)化路徑確定了甲烷轉(zhuǎn)化過程的最低能量路徑。在最低能量轉(zhuǎn)化途徑中,CH4首先通過CH4→CH3→CH2→CH→CHO→CO或CH4→CH3→CH2→CH→CHOH→CHO→CO兩個路徑轉(zhuǎn)化為CO,然后再經(jīng)過直接氧化CO→CO_2轉(zhuǎn)化成CO_2。計(jì)算表明,甲烷的最低能量轉(zhuǎn)化路徑為中沒有C的直接生成,積碳發(fā)生在表面含氧反應(yīng)介質(zhì)OH或O濃度低的區(qū)域。促進(jìn)含氧介質(zhì)擴(kuò)散到甲烷和鎳催化劑的兩相界面(DPB)上,增加DPB界面上的含氧介質(zhì)濃度,可以有效抑制積碳的產(chǎn)生;趯(shí)驗(yàn)結(jié)果和理論分析,提出了堿土金屬氧化物Ba O修飾Ni-YSZ陽極的抗積碳機(jī)理,認(rèn)為BaO修飾提高了鎳表面對H2O的捕獲和解離能力,促進(jìn)了Ni表面CH的消耗,避免了C的直接生成,從而抑制了積碳的產(chǎn)生。本研究的理論計(jì)算結(jié)果不僅合理解釋了實(shí)驗(yàn)結(jié)果,同時為以后的抗積碳研究提供了理論基礎(chǔ)。論文第五章采用相轉(zhuǎn)化技術(shù)結(jié)合涂覆燒結(jié)工藝制備了多孔TZP陶瓷支撐管式SOFC,對其電化學(xué)性能進(jìn)行了表征。為保證支撐管良好的透氣性,添加了40 wt.%的球形石墨為造孔劑,1400 oC燒結(jié)后的支撐體的孔隙率達(dá)到40.15%,孔結(jié)構(gòu)由非對稱結(jié)構(gòu)轉(zhuǎn)變成對稱結(jié)構(gòu)。TZP陶瓷支撐管式SOFC單電池在800 oC氫氣和甲烷燃料下,最大輸出功率分別為0.25和0.20 W cm-2,氫氣燃料下穩(wěn)定運(yùn)行100 h無明顯衰減。電池表現(xiàn)出良好的氧化還原穩(wěn)定性,經(jīng)過8個氧化還原循環(huán)后,TZP陶瓷支撐管式SOFC的800 oC下的開路電壓仍然可以達(dá)到1.02 V,峰值功率密度仍能達(dá)到0.26 W cm-2,繼續(xù)恒流放電100 h后沒有明顯的性能衰減。以金屬銀為連接體成功制備了TZP陶瓷支撐多段串聯(lián)管式SOFC(SIS-SOFC),以濕氫為燃料800 oC下兩節(jié)和四節(jié)串聯(lián)的電池開路電壓分別達(dá)到了2.10 V和4.02 V,最大輸出功率密度分別達(dá)到了0.24 W cm-2和0.22 W cm-2;赥ZP陶瓷支撐管式SOFC研究了陽極積碳后的消除方法,提出了通過電化學(xué)反應(yīng)消除積碳的新策略,經(jīng)過不同模式下35個CH4-H2循環(huán)后仍能恢復(fù)到初始的性能水平。論文第六章發(fā)展了新的金屬支撐SOFC的制備工藝,以NiO和Fe2O3為原料,采用相轉(zhuǎn)化法、涂覆燒結(jié)和原位還原的方法成功制備了Ni-Fe合金支撐管式SOFC,并對其電化學(xué)性能進(jìn)行了表征。傳統(tǒng)的金屬支撐SOFC需要在還原氣氛或者惰性氣氛保護(hù)下制備,工藝繁瑣,且對設(shè)備要求較高。本研究提出以金屬氧化物為前驅(qū)體,在空氣氛圍下采用傳統(tǒng)的共燒技術(shù)制備SOFC,然后測試前原位還原制得金屬支撐SOFC。研究發(fā)現(xiàn),NiO-Fe2O3支撐管坯體與NiO-YSZ陽極功能層、YSZ電解質(zhì)在1400 oC下共燒有利于制備致密的YSZ電解質(zhì)層。XRD分析表明,支撐管經(jīng)原位還原后形成了Ni-Fe合金,既起到了支撐體的作用,又起到了陽極集電層的作用。在800 oC下,以濕氫氣為燃料氣時,Ni-Fe合金支撐管式SOFC的峰值輸出達(dá)到0.26 W cm-2。相對于傳統(tǒng)的金屬支撐SOFC的制備方法,本研究提出的原位還原的方法大大簡化了工藝難度,為金屬支撐SOFC的制備提供了新思路。綜上所述,低成本的相轉(zhuǎn)化技術(shù)非常適合管式SOFC支撐體的制備,采用本論文提出的相轉(zhuǎn)化浸漬法既可以浸漬活性催化劑用以提高電池的輸出性能,還可以浸漬改性試劑用來改善電池的穩(wěn)定性,有望應(yīng)用于其他電化學(xué)器件的優(yōu)化。SOFC陽極鎳催化劑表面含氧介質(zhì)的吸附和擴(kuò)散對甲烷轉(zhuǎn)化過程影響很大,及時地消耗CH中間體可顯著抑制積碳的產(chǎn)生。積碳不僅可以通過燃燒除掉,還可以通過電化學(xué)反應(yīng)消除掉。
[Abstract]:The rapid development of the economy and society has increased the demand for energy and more attention to the protection of the environment. Despite the rapid development of clean energy such as hydropower, wind power and solar energy in recent decades, the world's energy supply is still dominated by fossil energy. In order to meet energy demand and environmental protection at the same time, it is not only to speed up clean and renewable. Solid oxide fuel cell (SOFC) is a kind of energy conversion technology, which contains high efficiency, low noise, flexible fuel and so on. It has the advantages of high efficiency, low noise and flexible fuel. In spite of this, the high cost of key materials and preparation processes limited the promotion and application of SOFC technology. Therefore, it is necessary to carry out low cost battery preparation technology on the basis of the existing reliable material system. In addition, although the requirement for fuel gas is more flexible in theory, the proton exchange membrane can be used in SOFC. Fuel cells, such as fuel cells, can not be used as fuel, but the stability of the widely used anode materials in carbon based fuels is far from meeting the requirements of applications. This paper is based on cheap, most reliable material system based on low cost, simple process and CO combustion technology. A variety of tubular SOFC was prepared, and the new electrode optimization technology was developed. The conversion process of methane on the anode nickel catalyst was explored. The third chapter developed a new anodic modification method, phase transformation impregnation, and successfully impregnated the nano Fe, Ni and Ni on the inner wall of the channel of the support tube. BaO, and the effect of anodic modification on the performance and stability of the battery. Different from the traditional phase conversion process, the phase conversion impregnation method uses the catalyst precursor solution as the solidification bath. It is found that the precursor of the catalyst dissolved in the water can be dissolved in the solvent NMP and insoluble in the process of preparing the NiO-YSZ anode support tube by phase conversion impregnation. Under the driving force of the interdiffusion of water, the anode support with nanoscale catalyst can be obtained at all parts of the support. When the wet hydrogen is used as fuel at 800 oC, the peak power density of the Ni-YSZ anode supporting tube SOFC impregnated with Fe and Ni is increased to 0.40 and 0.48 W cm-2 respectively, and the peak of wet methane is the peak. The peak power density of the Ni-YSZ anode supporting tube SOFC of 0.37 and 0.45 W cm-2. impregnated BaO respectively is lower than that of the unmodified battery, but the stability of the operation under methane is greatly improved, and the voltage of 100 h at 800 oC at high temperature is only attenuated by the 0.17 V. proposed phase transformation impregnation method. The traditional impregnation method simplifies the process flow and improves the impregnation efficiency. The fourth chapter is based on the first principle to study the interaction between methane on the SOFC anode and the nickel catalyst and the process of methane conversion on the nickel catalyst. The lowest energy path of methane conversion process is determined by the conversion path of carbon containing intermediates. In the lowest energy conversion route, CH4 is first converted into two paths through CH4, CH3, CH2, CH, CHO, CO or CH4 to CH3 to CH2 to CH, CHOH, etc. The low energy conversion path is no direct generation of C, and carbon deposits occur in the area with low concentration of OH or O in the surface of oxygen containing reaction medium. Promoting the diffusion of oxygen medium to the two-phase interface (DPB) of methane and nickel catalyst, increasing the concentration of oxygen containing medium on the DPB interface, can effectively inhibit the production of carbon deposition. Based on experimental results and theoretical analysis, The anti carbon mechanism of the alkaline earth metal oxide Ba O modified Ni-YSZ anode has been developed. It is believed that BaO modification improves the capture and dissociation ability of the nickel surface to H2O, promotes the consumption of CH on the surface of the Ni, avoids the direct formation of C, and inhibits the production of carbon. The theoretical calculation of this study not only explained the experimental results reasonably, but also for the future. In the fifth chapter, a porous TZP ceramic support tube type SOFC was prepared by phase transformation and coating sintering, and its electrochemical performance was characterized. In order to ensure the good permeability of the support tube, the porosity of the support body after 1400 oC was added to the 40 wt.% spherical graphite as the pore forming agent. Up to 40.15%, the pore structure is transformed from asymmetrical structure to symmetrical structure, the.TZP ceramic support tube type SOFC single battery is under 800 oC hydrogen and methane fuel, the maximum output power is 0.25 and 0.20 W cm-2 respectively. The stable operation of 100 h under hydrogen fuel has no obvious attenuation. The battery shows good redox stability and passes through 8 redox cycles. After that, the open circuit voltage of the TZP ceramic support tube type SOFC under 800 oC can still reach 1.02 V, the peak power density can still reach 0.26 W cm-2. After continuing the constant current discharge 100 h, there is no obvious performance attenuation. The multi segment series SOFC (SIS-SOFC) of TZP ceramic support is prepared with the metal silver as the connecting body, and the wet hydrogen is used as the fuel 800 oC. The open circuit voltage of the battery in series with the four section reached 2.10 V and 4.02 V respectively. The maximum output power density reached 0.24 W cm-2 and 0.22 W cm-2., respectively, based on the TZP ceramic supporting tube SOFC to study the removal of the anode after carbon deposition. A new strategy to eliminate carbon deposition by electrochemical reaction was proposed, after 35 CH4-H2 cycles under different modes. In the sixth chapter, a new process for the preparation of a new metal supported SOFC is developed. Using NiO and Fe2O3 as raw materials, the Ni-Fe alloy support tube SOFC is successfully prepared by phase transformation, coating sintering and in situ reduction. The electrochemical properties of the SOFC are characterized. The traditional metal support SOFC needs to be in return. The preparation of the original atmosphere or inert atmosphere is tedious and requires high equipment. In this study, the metal oxide was used as the precursor and the traditional co firing technique was used in the air atmosphere to prepare SOFC, and then the metal support SOFC. was found in the former in situ reduction, and the NiO-Fe2O3 support tube body and the NiO-YSZ anode functional layer, YSZ The co firing of electrolytes at 1400 oC is beneficial to the preparation of compact YSZ electrolyte layer.XRD analysis, which indicates that the support tube has formed a Ni-Fe alloy after in situ reduction, which not only plays the role of the supporting body, but also plays the role of the anode collector layer. Under 800 oC, the peak output of the Ni-Fe alloy support tube SOFC reaches 0.26 W cm- when the wet hydrogen is used as fuel gas. 2. compared with the traditional method of preparing SOFC for metal support, the method of in situ reduction proposed in this study greatly simplifies the difficulty of the process and provides a new idea for the preparation of metal support SOFC. In summary, the low cost phase conversion technology is very suitable for the preparation of tubular SOFC support, and the phase transformation impregnation method proposed in this paper can not only be used in this paper. The impregnated active catalyst is used to improve the output performance of the battery, and the modified reagents can be impregnated to improve the stability of the battery. It is expected to be applied to the optimization of other electrochemical devices. The adsorption and diffusion of the oxygen containing medium on the surface of the.SOFC anode nickel catalyst has a great influence on the methane conversion process. The timely consumption of the intermediate of CH can significantly inhibit the carbon deposition. Carbon deposition can be removed not only by combustion, but also by electrochemical reaction.

【學(xué)位授予單位】:中國礦業(yè)大學(xué)(北京)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TM911.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 周玉存;李軍良;聶懷文;王紹榮;占忠亮;;金屬支撐固體氧化物燃料電池研究進(jìn)展[J];硅酸鹽學(xué)報(bào);2013年07期

2 余志平;王燕;劉曉彥;;固體理論進(jìn)展——半世紀(jì)回顧[J];中國科學(xué):信息科學(xué);2012年12期

3 孫旺;毛雅春;張乃慶;孫克寧;;陽極支撐微管式固體氧化物燃料電池的研究進(jìn)展[J];化工學(xué)報(bào);2013年01期

4 徐旭東;田長安;尹奇異;程繼海;;固體氧化物燃料電池電解質(zhì)材料的發(fā)展趨勢[J];硅酸鹽通報(bào);2011年03期

5 劉長華;李成新;李長久;;SOFC用Ni/Al_2O_3金屬陶瓷支撐層組織結(jié)構(gòu)與氣密性[J];電源技術(shù);2009年12期

6 沈薇;趙海雷;王治峰;王榕林;;固體氧化物燃料電池陰極材料的研究進(jìn)展[J];電池;2009年03期

7 白耀輝;劉江;;PSZ支撐型SOFC電堆的制備與性能測試[J];電源技術(shù);2009年05期

8 辛顯雙;朱慶山;;固體氧化物燃料電池(SOFC)電池穩(wěn)定性分析[J];化學(xué)進(jìn)展;2009年01期

9 陳毅飛;張敏華;姜浩錫;;甲烷部分氧化催化劑抗積碳性能的DFT研究[J];分子催化;2007年04期

10 李勇;邵剛勤;段興龍;王天國;;固體氧化物燃料電池電解質(zhì)材料的研究進(jìn)展[J];硅酸鹽通報(bào);2006年01期

相關(guān)碩士學(xué)位論文 前1條

1 王西寶;固體氧化物燃料電池合金基陽極材料的制備和性能研究[D];吉林大學(xué);2009年

,

本文編號:1799190

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1799190.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d0f10***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国内胖女人做爰视频有没有| 日韩1区二区三区麻豆| 国产成人免费高潮激情电| 亚洲欧美日韩综合在线成成| 欧美日本精品视频在线观看| 国产传媒精品视频一区| 国产精品免费视频专区| 日本欧美一区二区三区就| 国产爆操白丝美女在线观看 | 欧美成人一区二区三区在线| 欧美国产日韩在线综合| 国产精品一区二区有码| 亚洲精品国产第一区二区多人| 男女激情视频在线免费观看| 亚洲熟妇熟女久久精品| 亚洲一区二区三区福利视频| 日本高清不卡一二三区| 成人你懂的在线免费视频| 国产香蕉国产精品偷在线观看| 国产乱淫av一区二区三区| 日韩不卡一区二区视频| 东京不热免费观看日本| 99视频精品免费视频| 欧美国产日韩变态另类在线看| 午夜免费精品视频在线看| 99热九九在线中文字幕| 久久三级国外久久久三级| 久久精品国产在热亚洲| 69久久精品亚洲一区二区| 日本少妇中文字幕不卡视频| 91后入中出内射在线| 国产精品福利精品福利| 精品al亚洲麻豆一区| 国产免费成人激情视频| 91午夜少妇极品福利| 国产欧美日韩精品成人专区| 日韩高清一区二区三区四区| 欧美日韩黑人免费观看| 乱女午夜精品一区二区三区| 欧美国产日产在线观看| 人人爽夜夜爽夜夜爽精品视频|