高壓電解水控制系統(tǒng)設計
發(fā)布時間:2018-04-22 13:42
本文選題:電解水 + 高壓制氫; 參考:《吉林大學》2017年碩士論文
【摘要】:隨著科學技術的發(fā)展和人類生活水平的提高,清潔能源受到人們越來越多的關注,可再生、無污染逐漸成為選擇能源的重要標準之一。經(jīng)長期研究發(fā)現(xiàn),氫氣是最理想的能源之一。首先,氫氣的熱效率較高;其次,氫氣燃燒后產(chǎn)物是水,沒有任何污染物產(chǎn)生,是一種清潔性的能源。目前,電解水普遍采用的方法是雙電解槽電解法,該方法由于隔膜的存在,無法承受較大的壓強,更不能產(chǎn)生高壓下的氫氣和氧氣。本文所描述的是一款用于實現(xiàn)高壓電解水設備自動運行的控制系統(tǒng)的設計。該設備由電解槽、氫氣儲氣倉、氧氣儲氣倉、水箱、連接管及九路開關構成,采用從烏克蘭引進的新型鐵鎳合金電極材料。該電極材料可在單電解槽中電解水,間接性產(chǎn)生氫氣和氧氣,實現(xiàn)氫氣和氧氣的時空分離,F(xiàn)在工業(yè)電解水每產(chǎn)生1標準立方米氫氣和0.5標準立方米氧氣所消耗的電能平均約為4.5kwh,該電極材料耗能約為4.1kwh,處于較低水平。此外,該電極材料可產(chǎn)生壓強為10MPa以上的氣體,不需外界加壓就能實現(xiàn)高壓儲存氣體,解決了雙電解槽電解水中由于隔膜作用而不能達到高壓的難題。該電極材料相當于一個變阻負載,產(chǎn)生同一種氣體時,隨時間的推移而電阻逐漸變大。在產(chǎn)生氫氣時,需要為電極材料提供0.4V~1.4V的恒流電源;在產(chǎn)生氧氣時,需要為電極材料提供-0.6V~-1.6V的恒流電源。該系統(tǒng)通過實時檢測電極電壓、電極電流、氫氣儲氣倉和氧氣儲氣倉的壓強以及氫氣儲氣倉和氧氣儲氣倉的液位高度,實現(xiàn)自動控制電流參數(shù)的調(diào)整、電極電位的轉(zhuǎn)換、電磁閥開關的開合、設備加水以及故障提示等功能,并可以通過外部8個按鈕實現(xiàn)人工操作。此外,為方便了解設備的工作狀態(tài),使用液晶屏實時顯示系統(tǒng)采集的數(shù)據(jù)信息;為能實現(xiàn)遠程監(jiān)控,使用C#語言開發(fā)了上位機顯示與控制界面。本文給出了控制系統(tǒng)的硬件設計與軟件設計,并進行了系統(tǒng)的實際測試和數(shù)據(jù)的采集與分析。本設計從模塊上劃分為:外部信號輸入模塊、控制信號輸出模塊、電極電源模塊、信號采集模塊、設備信息顯示模塊以及上位機界面開發(fā)。選用單片機STM32f103C8T6作為系統(tǒng)的控制中心,通過外部按鍵或者上位機界面啟動系統(tǒng),系統(tǒng)自動進入設備信息采集模式,在設備狀態(tài)允許的情況下方可通過外部按鈕控制高壓電解水設備自動運行與生產(chǎn)。系統(tǒng)可通過電極電源模塊自動調(diào)節(jié)電極的電流參數(shù)和電極電位狀態(tài),使電極間隔性產(chǎn)生氫氣和氧氣,同時通過信號采集模塊周期性檢測設備各部分狀態(tài),當設備狀態(tài)出現(xiàn)異常時,將自動控制設備停止工作并通過設備信息顯示模塊進行故障提示。也可以通過外部按鍵或者上位機界面手動選擇高壓電解水設備處于自動運行模式或者手動運行模式。該系統(tǒng)的開發(fā)可以使高壓電解水制取氫氣和氧氣實現(xiàn)工業(yè)化,在化工、冶金及食品工業(yè)等領域得到更廣泛的應用。
[Abstract]:With the development of science and technology and the improvement of human living standard, people pay more and more attention to clean energy, renewable and pollution-free gradually become one of the important standards of energy choice. After long-term research, hydrogen is found to be one of the most ideal energy sources. Firstly, the thermal efficiency of hydrogen is high; secondly, the product of hydrogen combustion is water, without any pollutants, it is a kind of clean energy. At present, the common method of electrolytic water is double electrolytic cell electrolysis method. Because of the existence of diaphragm, the method can not bear a large pressure, let alone produce hydrogen and oxygen under high pressure. This paper describes the design of a control system for automatic operation of high voltage electrolytic water equipment. The equipment is composed of electrolysis cell, hydrogen gas storage chamber, oxygen gas storage chamber, water tank, connecting pipe and nine-way switch. The new Fe-Ni alloy electrode material imported from Ukraine is used. The electrode material can electrolyze water in a single electrolytic cell and indirectly produce hydrogen and oxygen, and realize the space-time separation of hydrogen and oxygen. At present, the average energy consumption of industrial electrolytic water for each generation of 1 cubic meter of hydrogen and 0.5 standard cubic meter of oxygen is about 4.5 kwh.The energy consumption of the electrode material is about 4.1 kwh. which is at a relatively low level. In addition, the electrode material can produce gas with a pressure above 10MPa, and can store gas at high pressure without external pressure, which solves the problem of high voltage in electrolytic water of double electrolytic cell because of diaphragm action. The electrode material is equivalent to a resistive load, and the resistance increases with time when the same gas is produced. It is necessary to provide constant current power supply of 0.4V~1.4V for electrode material while producing hydrogen and constant current power supply of -0.6V / -1.6V for electrode material when oxygen is generated. The system can automatically control the adjustment of current parameters and the conversion of electrode potential by real-time detecting electrode voltage, electrode current, the pressure of hydrogen gas storage chamber and oxygen storage tank, and the liquid level height of hydrogen gas storage chamber and oxygen storage tank. The opening and closing of solenoid valve switch, equipment adding water and fault indication can be manually operated by 8 external buttons. In addition, in order to understand the working state of the equipment, the display and control interface of the host computer is developed with C # language in order to display the data collected by the system in real time. This paper gives the hardware and software design of the control system, and carries on the actual test and the data collection and analysis of the system. The design is divided into three parts: external signal input module, control signal output module, electrode power module, signal acquisition module, equipment information display module and upper computer interface development. The single-chip computer STM32f103C8T6 is selected as the control center of the system. The system automatically enters the equipment information collection mode by starting the system through the external keys or the upper computer interface. The automatic operation and production of high voltage electrolytic water equipment can be controlled by external buttons when the state of the equipment allows. The system can automatically adjust the electrode current parameters and electrode potential state through the electrode power module, so that the electrode spacing can produce hydrogen and oxygen, at the same time, the signal acquisition module periodically detects the state of each part of the equipment. When there is an abnormal state of the device, the device will be automatically controlled to stop working and fault prompted through the device information display module. It is also possible to manually select high voltage electrolytic water equipment in automatic operation mode or manual operation mode through external keys or upper computer interface. The development of the system can industrialize the production of hydrogen and oxygen from high pressure electrolytic water, and it can be widely used in chemical, metallurgical and food industries.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ116.21;TP273
【參考文獻】
相關期刊論文 前2條
1 張西子;;氫能源及其利用[J];科技致富向?qū)?2012年23期
2 鮑官軍,計時鳴,張利,王亞良;CAN總線技術、系統(tǒng)實現(xiàn)及發(fā)展趨勢[J];浙江工業(yè)大學學報;2003年01期
相關碩士學位論文 前1條
1 武壯;CAN總線應用系統(tǒng)設計[D];河北大學;2005年
,本文編號:1787471
本文鏈接:http://sikaile.net/kejilunwen/huagong/1787471.html
教材專著