石墨烯基超級(jí)電容器電極材料結(jié)構(gòu)調(diào)控與性能
本文選題:超級(jí)電容器 + 石墨烯; 參考:《哈爾濱工業(yè)大學(xué)》2015年博士論文
【摘要】:超級(jí)電容器作為一種儲(chǔ)能器件,具有高功率、長(zhǎng)壽命、高可靠性的特點(diǎn),被廣泛應(yīng)用于新能源、電子器件、電動(dòng)車等領(lǐng)域。目前對(duì)超級(jí)電容器的研究主要集中在保持其高功率特性的前提下,提高其能量密度。由超級(jí)電容器能量密度(E)的計(jì)算公式E=1/2(CV2)可知,可以通過(guò):(1)開發(fā)具有高比容量(C)的新型電極材料;(2)設(shè)計(jì)具有高工作電壓(V)的的電容器體系,來(lái)達(dá)到提高超級(jí)電容器能量密度的目的。本文首先以獲得高比容量電極材料為目標(biāo),通過(guò)利用氧化石墨烯獨(dú)特的物理化學(xué)性質(zhì)(可還原性、可組裝性、可修飾性和陰離子性等),設(shè)計(jì)制備出氧化石墨烯轉(zhuǎn)化碳球、還原氧化石墨烯/Mn_3O_4復(fù)合粉體和氧化石墨烯/聚吡咯復(fù)合薄膜三個(gè)體系超級(jí)電容器電極材料;其次,為獲得高的工作電壓,分別以MnO_2和水熱還原氧化石墨烯為正負(fù)極,利用其析氫析氧過(guò)電位,設(shè)計(jì)構(gòu)建具有高工作電壓的非對(duì)稱水系超級(jí)電容器。利用氧化石墨烯的可組裝性,通過(guò)調(diào)控水熱環(huán)境,實(shí)現(xiàn)氧化石墨烯自組裝轉(zhuǎn)化形成碳球。發(fā)現(xiàn)氧化石墨烯前驅(qū)體溶液中引入含氧酸(硫酸、磷酸)或水合肼可促使氧化石墨烯發(fā)生結(jié)構(gòu)重構(gòu)形成碳球。氧化石墨烯轉(zhuǎn)化碳球在電子束輻照下具有獨(dú)特的刺激響應(yīng)行為-即球核受熱分解發(fā)生體積膨脹形成空心化碳球。由于碳球是由石墨烯高度團(tuán)聚-包覆-脫水重構(gòu)轉(zhuǎn)化而來(lái),導(dǎo)致電解液難以浸入到碳球內(nèi)部,即碳球的形成降低了水熱還原氧化石墨烯的電化學(xué)活性表面。因此碳球的形成不利于獲得具有高比容量的水熱還原氧化石墨烯材料。通過(guò)醋酸錳在還原氧化石墨烯的二甲基甲酰胺/水混合溶劑分散液中水解實(shí)現(xiàn)Mn_3O_4納米顆粒(粒徑5nm左右)對(duì)還原氧化石墨烯表面的修飾改性。優(yōu)選的Mn_3O_4修飾量(58 wt.%)既能有效防止還原氧化石墨烯片層在干燥過(guò)程中的緊密疊層,而且不發(fā)生自身團(tuán)聚,因此可獲得較高的電化學(xué)活性表面。還原氧化石墨烯/Mn_3O_4復(fù)合粉體在2mA/cm~2的放電電流密度下,比容量達(dá)343F/g,且當(dāng)電流密度增加至50m A/cm~2時(shí),仍能保持215F/g的比容量。利用氧化石墨烯的陰離子性,在吡咯、氧化石墨烯和高氯酸鋰前驅(qū)體水溶液中通過(guò)一步電化學(xué)共沉積,獲得了厚度達(dá)50μm的三維氧化石墨烯/聚吡咯復(fù)合薄膜。該薄膜由聚吡咯涂覆的氧化石墨烯片三維交聯(lián)而形成,因此具有快速的離子擴(kuò)散孔道。通過(guò)控制前驅(qū)體溶液中氧化石墨烯濃度可實(shí)現(xiàn)對(duì)復(fù)合薄膜形貌結(jié)構(gòu)的有效控制;钚圆牧县(fù)載量為0.26mg/cm~2的復(fù)合薄膜電極質(zhì)量比容量高達(dá)481.1F/g,而負(fù)載量為1.02mg/cm~2的復(fù)合薄膜電極則表現(xiàn)出最高的面積比容量(387.6m F/cm~2)。氧化石墨烯/聚吡咯復(fù)合薄膜電極具有優(yōu)異的倍率性能,當(dāng)放電電流密度由0.2增至10m A/cm~2時(shí)(50倍),容量保持率均在80%以上;谘趸/聚吡咯復(fù)合薄膜電極的水系和固態(tài)超級(jí)電容器具有優(yōu)異的電化學(xué)電容特性,倍率特性和循環(huán)穩(wěn)定性。其中工作電壓0.8V的水系超級(jí)電容器在80W/kg的功率密度下,能量密度為16.4Wh/kg,且當(dāng)功率密度增加至4000W/kg時(shí),能夠保持其78%的初始能量密度。利用MnO_2正極和石墨烯負(fù)極之間電化學(xué)窗口的匹配性,以1mol/L硫酸鈉水溶液為電解液,構(gòu)建了工作電壓達(dá)2.0V的MnO_2//石墨烯非對(duì)稱超級(jí)電容器。該非對(duì)稱體系在100W/kg的功率密度下,能量密度可達(dá)25.2Wh/kg,優(yōu)于對(duì)稱式MnO_2//MnO_2(4.9Wh/kg)和石墨烯//石墨烯電容器(3.6Wh/kg)。循環(huán)壽命測(cè)試結(jié)果表明,MnO_2//石墨烯非對(duì)稱超級(jí)電容器在500次充放電循環(huán)之后容量保持為97%。
[Abstract]:The super capacitor as an energy storage device with high power, long life, high reliability, is widely used in the new energy, electronic devices, electric vehicles and other fields. The current research on super capacitors mainly concentrated on the premise of maintaining high power characteristics, improve its energy density by the super capacitor. The energy density (E) of the formula E=1/2 (CV2) that can be adopted: (1) developed with high specific capacity (C) of the new electrode materials; (2) the design of high voltage capacitor (V) system, to improve the super capacitor energy density. Firstly, in order to get high capacity electrode materials as the goal, through the use of graphene oxide to unique physical and chemical properties (reducibility, composability, modification and anionic etc.), designed and prepared graphene oxide into the carbon spheres, graphene oxide /Mn_3O_4 composite powder and reduction Graphene oxide / polypyrrole composite film three system super capacitor electrode material; secondly, in order to obtain high working voltage, respectively by MnO_2 and hydrothermal reduction of graphene oxide as anode and the overpotential of hydrogen, designed with high voltage asymmetric super capacitor. The oxidation of water graphene can be assembled, through the regulation of water and heat environment, realize the graphene oxide self-assembly formation of carbon spheres. Found that the introduction of oxygen acid graphene oxide precursor solution (sulfate, phosphate) or hydrazine hydrate can make graphene oxide structure reconstruction of the formation of carbon spheres. The graphene oxide into the carbon spheres with a response behavior - unique stimulus ball nuclear thermal decomposition volume expansion forming hollow carbon spheres under electron beam irradiation. The ball is made of carbon - coated graphene highly agglomeration dehydration transformation and reconstruction, resulting in electrolytic liquid difficult In order to immersed into carbon spheres, electrochemical active surface of graphene oxide by hydrothermal reduction that reduces the formation of carbon ball. So the ball is not conducive to the formation of carbon reduction of graphene oxide material with high specific capacity. The hot water by manganese acetate in two dimethyl formyl amine / reduced graphene oxide water mixed solvent dispersion the realization of Mn_3O_4 nanoparticles in liquid hydrolysis (diameter about 5nm) modification on the surface modification of graphite oxide. The amount of modified Mn_3O_4 preferred (58 wt.%) can prevent the reduction of graphene oxide layers in the drying process closely stacked, and not their reunion, therefore can obtain the electrochemical active surface high. Reduction of graphene oxide /Mn_3O_4 composite powder in the discharge current density of 2mA/cm~2, the specific capacitance of 343F/g, and when the current density increased to 50m A/cm~2, can still maintain the specific capacity of 215F/g. The use of oxygen fossil Anionic, graphene in pyrrole, by one-step electrochemical deposition of graphene oxide and lithium perchlorate precursor in aqueous solution, three-dimensional graphene oxide / the thickness of 50 m polypyrrole composite film. The film is composed of graphene oxide sheets of polypyrrole coated three-dimensional cross-linked form, so it has fast the ion diffusion channels. By controlling the concentration of graphene oxide in the precursor solution can achieve effective control of the morphology of the composite films. The active material loading of 0.26mg/cm~2 composite film electrode quality than the capacity of up to 481.1F/g, and the capacity for the composite film electrode of 1.02mg/cm~2 showed the highest area ratio (387.6m F/cm~2) capacity. Graphene oxide / polypyrrole composite film electrode has excellent rate performance, when the discharge current density increased from 0.2 to 10m A/cm~2 (50 times), the capacity retention rate was more than 80%. On the basis of oxygen Graphene / polypyrrole composite film electrode system and solid super capacitor with excellent electrochemical properties, rate performance and cycle stability. The working voltage of 0.8V system of super capacitors in 80W/kg power density, energy density is 16.4Wh/kg, and when the power density increases to 4000W/kg, the initial energy density can be maintained 78%. Using the matching between MnO_2 cathode and graphene anode electrochemical window, with 1mol/L sodium sulfate solution as electrolyte, MnO_2// graphene constructs the working voltage of 2.0V asymmetricsupercapacitor. The asymmetric system in 100W/kg power density, energy density of up to 25.2Wh/kg, is better than that of symmetric MnO_2//MnO_2 (4.9Wh/kg) and graphene / graphene capacitors (3.6Wh/kg). The cycle life test results show that the MnO_2// graphene asymmetricsupercapacitor in 500 charge / discharge cycles After the loop capacity is still 97%.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ127.11;TM53
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許開卿;吳季懷;范樂(lè)慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級(jí)電容器研究進(jìn)展[J];材料導(dǎo)報(bào);2011年15期
2 梓文;;超高能超級(jí)電容器[J];兵器材料科學(xué)與工程;2013年04期
3 ;歐盟創(chuàng)新型大功率超級(jí)電容器問(wèn)世[J];功能材料信息;2014年01期
4 周霞芳;;無(wú)污染 充電快 春節(jié)后有望面市 周國(guó)泰院士解密“超級(jí)電容器”[J];環(huán)境與生活;2012年01期
5 江奇,瞿美臻,張伯蘭,于作龍;電化學(xué)超級(jí)電容器電極材料的研究進(jìn)展[J];無(wú)機(jī)材料學(xué)報(bào);2002年04期
6 朱修鋒,王君,景曉燕,張密林;超級(jí)電容器電極材料[J];化工新型材料;2002年04期
7 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級(jí)電容器氧化物電極材料的研究進(jìn)展[J];礦冶工程;2003年02期
8 朱磊,吳伯榮,陳暉,劉明義,簡(jiǎn)旭宇,李志強(qiáng);超級(jí)電容器研究及其應(yīng)用[J];稀有金屬;2003年03期
9 賀福;碳(炭)材料與超級(jí)電容器[J];高科技纖維與應(yīng)用;2005年03期
10 鄧梅根,楊邦朝,胡永達(dá);卷繞式活性炭纖維布超級(jí)電容器的研究[J];功能材料;2005年08期
相關(guān)會(huì)議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級(jí)電容器納米電極材料的研究[A];2009中國(guó)功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級(jí)電容器電極材料的最新研究進(jìn)展[A];第二十八屆全國(guó)化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財(cái);符若文;;聚苯乙烯基層次孔碳的活化及其在超級(jí)電容器中的應(yīng)用[A];中國(guó)化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚(yáng);解晶瑩;;扣式超級(jí)電容器組的研制[A];第十二屆中國(guó)固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
5 單既成;陳維英;;超級(jí)電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會(huì)論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級(jí)電容器的研究[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級(jí)電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級(jí)電容器——多孔碳電極材料的影響[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
9 馬衍偉;;新型超級(jí)電容器石墨烯電極材料的研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年
10 劉不厭;彭喬;孫s,
本文編號(hào):1732700
本文鏈接:http://sikaile.net/kejilunwen/huagong/1732700.html