基于多證據(jù)融合決策的間歇過程測量數(shù)據(jù)異常檢測方法
本文選題:間歇過程 切入點(diǎn):D-S證據(jù)理論 出處:《化工學(xué)報(bào)》2017年08期
【摘要】:間歇過程測量數(shù)據(jù)的高維、非線性、非高斯分布特征直接影響過程測量數(shù)據(jù)異常檢測的準(zhǔn)確性,為了融合多源數(shù)據(jù)異常檢測信息,提升間歇過程測量數(shù)據(jù)異常檢測精度,提出了一種基于多證據(jù)融合決策的間歇過程測量數(shù)據(jù)異常檢測方法,該方法通過引入證據(jù)理論(Dempster-Shafer,D-S),采用主焦元判別偽證據(jù)和重新計(jì)算證據(jù)權(quán)重改進(jìn)沖突證據(jù)處理方法,減小了沖突證據(jù)對(duì)多證據(jù)融合決策結(jié)果的影響,提高了間歇過程測量數(shù)據(jù)異常檢測的準(zhǔn)確率。構(gòu)建了基于多證據(jù)融合的測量數(shù)據(jù)異常檢測模型并將其應(yīng)用到間歇過程測量數(shù)據(jù)異常檢測決策判決中。實(shí)驗(yàn)結(jié)果表明,該方法能夠融合多證據(jù)信息,有效地處理沖突證據(jù),實(shí)現(xiàn)了間歇過程測量數(shù)據(jù)異常檢測,降低了誤檢和漏檢率。
[Abstract]:The high dimensional, nonlinear and non-#china_person0# distribution characteristics of batch process measurement data directly affect the accuracy of process measurement data anomaly detection. In order to fuse multi-source data anomaly detection information, improve the accuracy of intermittent process measurement data anomaly detection. An anomaly detection method for intermittent process measurement data based on multi-evidence fusion decision is proposed in this paper. By introducing evidence theory into Dempster-Shafern D-Sine, the main focus element is used to distinguish false evidence and the weight of evidence is recalculated to improve the method of dealing with conflicting evidence. It reduces the impact of conflict evidence on the decision results of multi-evidence fusion. The anomaly detection model based on multi-evidence fusion is constructed and applied to the decision decision of interval process measurement data anomaly detection. The experimental results show that, This method can fuse multi-evidence information, deal with conflict evidence effectively, realize abnormal detection of intermittent process measurement data, and reduce the rate of false detection and missed detection.
【作者單位】: 北京化工大學(xué)信息科學(xué)與技術(shù)學(xué)院;
【基金】:國家自然科學(xué)基金項(xiàng)目(61240047) 北京市自然科學(xué)基金項(xiàng)目(4152041)~~
【分類號(hào)】:TQ050.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 王立敏;楊繼勝;于晶賢;李秉蕓;高福榮;;基于T-S模糊模型的間歇過程的迭代學(xué)習(xí)容錯(cuò)控制[J];化工學(xué)報(bào);2017年03期
2 韓敏;張占奎;;基于改進(jìn)核主成分分析的故障檢測與診斷方法[J];化工學(xué)報(bào);2015年06期
3 曹鵬飛;羅雄麟;;化工過程軟測量建模方法研究進(jìn)展[J];化工學(xué)報(bào);2013年03期
4 蔣余廠;劉愛倫;;基于GLR-NT的顯著誤差檢測與數(shù)據(jù)協(xié)調(diào)[J];華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期
5 陳斌;萬江文;吳銀鋒;秦楠;;神經(jīng)網(wǎng)絡(luò)和證據(jù)理論融合的管道泄漏診斷方法[J];北京郵電大學(xué)學(xué)報(bào);2009年01期
6 田慧欣;毛志忠;趙珍;;與軟測量建模相結(jié)合的過失誤差偵破新方法[J];儀器儀表學(xué)報(bào);2008年12期
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王惠中;夏雨婷;喬林翰;劉聯(lián)濤;;關(guān)于電機(jī)故障診斷方法的優(yōu)化研究[J];計(jì)算機(jī)仿真;2017年06期
2 藍(lán)艇;童楚東;史旭華;;變量加權(quán)型主元分析算法及其在故障檢測中的應(yīng)用[J];化工學(xué)報(bào);2017年08期
3 劉偉e,
本文編號(hào):1696603
本文鏈接:http://sikaile.net/kejilunwen/huagong/1696603.html