天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化工論文 >

基于計算流體力學(xué)和多目標(biāo)遺傳算法的氣液攪拌反應(yīng)器模擬與優(yōu)化

發(fā)布時間:2018-03-25 22:20

  本文選題:多目標(biāo)優(yōu)化 切入點(diǎn):多相流 出處:《浙江大學(xué)》2017年碩士論文


【摘要】:氣液攪拌反應(yīng)器因具有操作靈活性強(qiáng)、傳質(zhì)效果好、混合效率高等優(yōu)點(diǎn)在過程工業(yè)中廣泛應(yīng)用。反應(yīng)器結(jié)構(gòu)是影響內(nèi)部物料流動、混合、傳質(zhì)及反應(yīng)的重要因素,對氣液攪拌反應(yīng)器結(jié)構(gòu)進(jìn)行優(yōu)化意義重大。早期對氣液攪拌釜的優(yōu)化研究依賴于實(shí)驗(yàn)手段,測量方法受限,需反復(fù)試驗(yàn),太過耗時且成本較高。隨著計算流體力學(xué)(computational fluid dynamics,CFD)技術(shù)的發(fā)展,能快速而相對準(zhǔn)確地獲取反應(yīng)器內(nèi)部詳細(xì)的流場信息。然而基于CFD的優(yōu)化過程通常只考慮單參數(shù)變化,涉及多個參數(shù)則需要通過大量的模擬才能篩選出較優(yōu)結(jié)果,加上多相體系固有的復(fù)雜性,導(dǎo)致計算量巨大且只能得到局部最優(yōu)解。多目標(biāo)遺傳算法(multi-objective evolutionary algorithm,MOEA)具有全局優(yōu)化、并行搜索、快速收斂等特點(diǎn)。本文針對上述問題,提出了將CFD技術(shù)與優(yōu)化算法相結(jié)合的解決方法。以雙層槳?dú)庖簲嚢璺磻?yīng)器為例進(jìn)行結(jié)構(gòu)優(yōu)化,驗(yàn)證了該方法的可行性和有效性。主要工作與研究結(jié)果如下:(1)基于實(shí)驗(yàn)與CFD分析,建立了一種適用于氣液攪拌反應(yīng)器設(shè)計的多目標(biāo)優(yōu)化方法。借助雙電導(dǎo)電極探針和扭矩測量等實(shí)驗(yàn)技術(shù)驗(yàn)證CFD模型,并在MATLAB平臺上整合CFD分析模塊和優(yōu)化算法模塊,引入?yún)?shù)化建模和自動網(wǎng)格生成技術(shù),利用CFD模擬獲取反應(yīng)器內(nèi)部流場信息,以此指導(dǎo)快速非支配排序遺傳算法(non-dominated sorting genetic algorithm,NSGA-Ⅱ)在龐大的求解空間中高效并行尋優(yōu)。通過創(chuàng)建模塊接口,實(shí)現(xiàn)全自動優(yōu)化過程,可以顯著地減少計算量,獲取全局最優(yōu)解。(2)在轉(zhuǎn)速300 rpm,表觀氣速0.02 m/s的空氣-水體系中,采用均一氣泡尺寸假設(shè),將多目標(biāo)優(yōu)化方法應(yīng)用于雙層槳?dú)庖簲嚢韪膬?yōu)化,從而實(shí)現(xiàn)節(jié)能和良好的氣體分散。首先建立以槳葉結(jié)構(gòu)參數(shù)為優(yōu)化變量,以最大氣含率和最小攪拌功率為目標(biāo)函數(shù)的優(yōu)化命題,利用CFD和NSGA-Ⅱ算法耦合求解,得到了PCBDT-PTD(下層斜凹葉圓盤渦輪槳-上層下壓斜葉槳)優(yōu)化槳組合。隨后探討了槳組合類型和設(shè)計變量對目標(biāo)函數(shù)的影響,發(fā)現(xiàn)上層槳為上翻斜葉槳(PTU)時氣體分布效果較差,為PTD時氣體分散性能最好,隨著槳葉傾斜角度增大,氣體分布更均勻,攪拌功率先增加,待傾角大于90°后逐漸減小;下層槳為凹葉槳時載氣性能良好,凹葉片的長徑比增大,載氣性能提高,而葉片切角越大,攪拌功率越低。最后考察了優(yōu)化結(jié)果的可靠性,測得優(yōu)化槳組合的氣含率較高且沿軸向均勻分布,明顯改善了兩槳之間的氣體分散狀況。優(yōu)化后能耗大幅降低,較標(biāo)準(zhǔn)的RT-RT(雙層六直葉圓盤渦輪槳)組合至少降低了 25%。(3)針對反應(yīng)器內(nèi)部氣泡大小分布不均的問題,引入了關(guān)聯(lián)湍流耗散率與氣泡直徑的氣泡尺寸模型,在模型驗(yàn)證的基礎(chǔ)上,對雙層槳?dú)庖簲嚢璺磻?yīng)器進(jìn)行多目標(biāo)優(yōu)化。首先以槳葉結(jié)構(gòu)參數(shù)為優(yōu)化變量,以最大氣液比相界面積和最小攪拌功率為目標(biāo)建立優(yōu)化命題,得到了 PCBDT-PTU(斜凹葉圓盤渦輪槳-上翻斜葉槳)和PCBDT-PTD(斜凹葉圓盤渦輪槳-下壓斜葉槳)兩種優(yōu)化槳組合。然后利用不同槳型揭示了反應(yīng)器內(nèi)部氣泡尺寸分布規(guī)律,闡明了槳組合類型對目標(biāo)函數(shù)的影響。研究發(fā)現(xiàn),葉輪區(qū)的氣泡尺寸沿著排出流方向先變小后逐漸變大,在循環(huán)區(qū)和液面附近氣泡相對較大。此外,PCBDT-PTU優(yōu)化槳組合的局部相界面積峰值最高,而PCBDT-PTD優(yōu)化槳組合的相界面積分布最均勻,均能在低功耗下實(shí)現(xiàn)高效傳質(zhì)。最后,驗(yàn)證了優(yōu)化結(jié)果的準(zhǔn)確性,實(shí)驗(yàn)測得PCBDT-PTU優(yōu)化槳組合的氧傳質(zhì)系數(shù)接近RT-RT標(biāo)準(zhǔn)槳組合的兩倍,能耗較RT-RT降低了 29%。
[Abstract]:The gas-liquid stirred reactor because of its operating flexibility, good mass transfer effect, higher mixing efficiency has been widely used in process industry. The reactor structure is the internal material flow, mixing, mass transfer and reaction of the important factors on the structure of the reactor, gas-liquid mixing optimize significant. Early studies on Optimization of gas-liquid stirred tank depends on experimental method, measurement method is limited, the repeated test, too time-consuming and high cost. With the computational fluid dynamics (computational fluid, dynamics, CFD) technology development, can quickly and accurately obtain relatively detailed flow information within the reactor. However, the optimization of CFD is usually considered based on single parameter changes, involving many a parameter is required by a lot of simulations to optimal results, the inherent complexity of multiphase system and lead to the great amount of calculation, and can only get the local optimal solution . the multi-objective genetic algorithm (multi-objective evolutionary algorithm, MOEA) with global optimization, parallel search, fast convergence characteristics. Aiming at these problems, put forward the solution method of combining CFD technique and optimization algorithm. With double impeller gas-liquid stirred reactor with structure optimization, proves the method is feasible and effective. The main work and research results are as follows: (1) analysis and experiment based on CFD, established a suitable gas-liquid stirred reactor design of the multi-objective optimization method. By means of double electrode electric conductivity probe and torque measurement technique to validate the CFD model, and integrates the CFD analysis module and optimization module on the MATLAB platform. The introduction of parametric modeling and automatic mesh generation technology, simulation of internal flow field information acquisition reactor using CFD, so as to guide the fast non dominated sorting genetic algorithm (non-dominated sorting Genetic algorithm, NSGA- II) efficient parallel optimization in solving large space. By creating a module interface, realize the automatic optimization process, can significantly reduce the amount of computation to obtain the global optimal solution. (2) at the speed of 300 rpm, the air - water system of superficial gas velocity of 0.02 m/s, using uniform bubble the size optimization hypothesis, the multi-objective optimization method is applied to dual impeller gas-liquid stirred tank, in order to achieve energy saving gas and good dispersion. The first to establish the blade structure parameters as optimization variables, the minimum rate and stirring power containing the atmosphere as the optimization objective function, using CFD and NSGA- II algorithm coupled solution, get the PCBDT-PTD (pressure lower pitched blade paddle helical concave blade disk turbine blade under the upper impeller combination. Then optimization) to investigate the effect of impeller combination type and design variables on the objective function, found the upper impeller to turn on the cable when the gas Ye Jiang (PTU) The cloth effect is poor, PTD gas dispersion performance of the best, with the blade tilt angle increases, the gas distribution is more uniform, the stirring power increased, when the angle is larger than 90 degree decrease; the lower impeller is a concave blade when the carrier gas has good performance, concave blade length diameter ratio increases, improve the carrier gas performance, and leaves cutting angle is larger, the lower stirring power. Finally we investigated the reliability of the optimization results, high rate and uniform distribution along the axial direction with the measured optimization of impeller combination gas, improve the gas between the two pitch dispersion conditions. The optimized energy consumption is greatly reduced, compared with the standard RT-RT (double six straight blade turbine impeller) the combination of reduced at least 25%. (3) to solve the problem of bubble reactor size distribution are introduced into the model, the bubble size relation of turbulent dissipation rate and bubble diameter, on the basis of the model validation, the dual Impeller Stirred gas-liquid reactor for multiple targets The blade structure parameters optimization. Firstly as optimization variables, with the maximum specific gas-liquid interfacial area and the minimum mixing power optimization proposition as the goal, the PCBDT-PTU (oblique concave blade disk turbine blade double impeller) and PCBDT-PTD (oblique concave blade disk turbine blade under pressure impeller) two optimization different types of impeller impeller combination. Then reveals the reactor internal bubble size distribution, illustrates the influence of impeller combination type of objective function. The study found that the bubble size along the impeller discharge flow direction decreases first and then increases gradually, in the vicinity of the circulation zone and the bubble level is relatively large. In addition, local optimization PCBDT-PTU impeller combination of interfacial area and the highest peak, PCBDT-PTD optimization of impeller combination of interfacial area distribution is most uniform, which can achieve high efficiency of mass transfer in low power consumption. Finally, verifying the accuracy of the optimization results, the measured PCBDT-PTU optimization The oxygen mass transfer coefficient of the paddle combination is close to two times that of the RT-RT standard paddle combination, and the energy consumption is lower than that of RT-RT by 29%.

【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ052.5

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王春林;葉劍;曾成;夏勇;羅波;;基于NSGA-Ⅱ遺傳算法高比轉(zhuǎn)速混流泵多目標(biāo)優(yōu)化設(shè)計[J];農(nóng)業(yè)工程學(xué)報;2015年18期

2 包雨云;楊杰;王冰潔;高正明;;槳徑變化對多層槳攪拌槽中氣液分散局部特性的影響(英文)[J];Chinese Journal of Chemical Engineering;2015年04期

3 李孟;李向陽;王宏智;謝勇冰;曹宏斌;;鼓泡塔氣液兩相流不同曳力模型的數(shù)值模擬[J];過程工程學(xué)報;2015年02期

4 倪偉佳;段作營;桑美納;劉煩;史仲平;段生兵;;采用CFD數(shù)值模擬技術(shù)優(yōu)化發(fā)酵罐內(nèi)槳葉組合[J];生物學(xué)雜志;2012年04期

5 王嘉駿;李良超;顧雪萍;馮連芳;;攪拌反應(yīng)器內(nèi)氣液兩相流的CFD研究進(jìn)展[J];化工設(shè)備與管道;2012年01期

6 鄭遠(yuǎn)攀;張亞麗;孫墾;;基于C編程和Gambit Journal的地形曲面生成技術(shù)[J];華北水利水電學(xué)院學(xué)報;2011年04期

7 王瓏;王同光;羅源;;Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades[J];Applied Mathematics and Mechanics(English Edition);2011年06期

8 肖曉偉;肖迪;林錦國;肖玉峰;;多目標(biāo)優(yōu)化問題的研究概述[J];計算機(jī)應(yīng)用研究;2011年03期

9 李良超;王嘉駿;顧雪萍;馮連芳;李伯耿;;氣液攪拌槽內(nèi)氣泡尺寸與局部氣含率的CFD模擬[J];浙江大學(xué)學(xué)報(工學(xué)版);2010年12期

10 邊霞;米良;;遺傳算法理論及其應(yīng)用研究進(jìn)展[J];計算機(jī)應(yīng)用研究;2010年07期

相關(guān)博士學(xué)位論文 前3條

1 盧少鵬;具有氣膜及氣熱耦合優(yōu)化功能的渦輪氣動設(shè)計體系研究[D];哈爾濱工業(yè)大學(xué);2014年

2 李良超;氣液反應(yīng)器局部分散特性的實(shí)驗(yàn)與數(shù)值模擬[D];浙江大學(xué);2010年

3 申曉寧;基于進(jìn)化算法的多目標(biāo)優(yōu)化方法研究[D];南京理工大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 張昕;三相攪拌反應(yīng)器傳質(zhì)特性的研究[D];北京化工大學(xué);2015年

2 李紅星;攪拌反應(yīng)器中粘性物系的氣液分散特性研究[D];浙江大學(xué);2013年

3 顏溯;基于燃油經(jīng)濟(jì)性的汽車列車傳動系統(tǒng)參數(shù)優(yōu)化[D];重慶交通大學(xué);2012年

4 陳靜;改進(jìn)的非支配排序多目標(biāo)遺傳算法及應(yīng)用[D];湘潭大學(xué);2009年

5 朱文龍;基于遺傳算法的BP神經(jīng)網(wǎng)絡(luò)在多目標(biāo)優(yōu)化中的應(yīng)用研究[D];哈爾濱理工大學(xué);2009年

6 朱國俊;基于NSGA-II算法的軸流式葉片優(yōu)化設(shè)計[D];西安理工大學(xué);2009年

7 徐磊;基于遺傳算法的多目標(biāo)優(yōu)化問題的研究與應(yīng)用[D];中南大學(xué);2007年

8 李s,

本文編號:1665106


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1665106.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7e5b7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com