漂珠對(duì);⒅楸鼗炷列阅艿挠绊懺囼(yàn)研究
本文選題:粉煤灰漂珠 切入點(diǎn):;⒅楸鼗炷 出處:《太原理工大學(xué)》2017年碩士論文
【摘要】:;⒅楸鼗炷辆哂斜、承重、節(jié)能、質(zhì)輕等優(yōu)點(diǎn),符合國(guó)家建筑節(jié)能的標(biāo)準(zhǔn),具有廣闊的應(yīng)用前景。近年來(lái),在節(jié)能減排的大背景下,要滿足我國(guó)在建筑節(jié)能方面提出的更高要求,需要對(duì)玻化微珠保溫混凝土保溫性能進(jìn)行優(yōu)化。粉煤灰是一種排放量大且嚴(yán)重污染環(huán)境的工業(yè)廢料。漂珠是其在燃燒過(guò)程中產(chǎn)生的一種固體廢棄物,具有自身強(qiáng)度高(約為玻化微珠的6倍)、導(dǎo)熱系數(shù)小的特點(diǎn)。因此,在保證玻化微珠保溫混凝土力學(xué)性能的前提下,以取代砂子的方式,將漂珠作為細(xì)骨料加入到;⒅楸鼗炷林惺莾(yōu)化其保溫性能的一種重要途徑。本文在C35等級(jí)的;⒅楸鼗炷恋幕A(chǔ)上,研究了漂珠細(xì)度、取代率(取代砂子)對(duì);⒅楸鼗炷凉ぷ餍阅、力學(xué)性能、熱工性能的影響規(guī)律。主要包括:1.不同漂珠細(xì)度對(duì);⒅楸鼗炷列阅艿挠绊懷芯俊Q芯苛巳N不同細(xì)度(1.9、2.5、3.2)漂珠在取代率為50%時(shí)對(duì);⒅楸鼗炷凉ぷ餍阅、力學(xué)性能以及保溫性能指標(biāo)的影響規(guī)律,研究結(jié)果表明:漂珠取代砂子對(duì)保溫混凝土抗壓強(qiáng)度有不利影響,抗壓強(qiáng)度降低幅度為10.9%~21.5%,但對(duì)導(dǎo)熱系數(shù)具有明顯的改善作用,其降低幅度為14.9%~27.6%。滿足保溫混凝土設(shè)計(jì)強(qiáng)度下傳熱性能最優(yōu)對(duì)應(yīng)的漂珠細(xì)度為1.9。2.不同漂珠取代率對(duì);⒅楸鼗炷列阅艿挠绊懷芯。研究了五種不同取代率(0、25%、50%、75%、100%)對(duì);⒅楸鼗炷恋墓ぷ餍阅、力學(xué)性能以及保溫性能指標(biāo)的影響規(guī)律,研究結(jié)果表明:(1)隨著漂珠取代率的增大,保溫混凝土的坍落度先增大后減小,漂珠取代率為50%和75%時(shí),拌合物和易性能較好。(2)隨著漂珠取代率的增大,保溫混凝土的劈裂抗拉強(qiáng)度、抗折強(qiáng)度、軸心抗壓強(qiáng)度、彈性模量減小。當(dāng)漂珠取代率大于50%時(shí),其抗壓強(qiáng)度降低幅度明顯增大,且不能夠滿足設(shè)計(jì)強(qiáng)度要求。摻有漂珠的保溫混凝土的拉壓比、折壓比均高于基準(zhǔn)值,漂珠的摻入,一定程度可以改善保溫混凝土的延性性能。(3)隨著漂珠取代率的增大,保溫混凝土的導(dǎo)熱系數(shù)逐漸減小。當(dāng)取代率從25%到100%時(shí),其導(dǎo)熱系數(shù)下降幅度為6.4%~34%。(4)滿足混凝土設(shè)計(jì)強(qiáng)度下傳熱性能最優(yōu)對(duì)應(yīng)的漂珠取代率為50%。綜合分析漂珠細(xì)度、取代率對(duì);⒅楸鼗炷凉ぷ餍阅堋⒘W(xué)性能、熱工性能的影響規(guī)律,得到相關(guān)性能指標(biāo)間的關(guān)系式,分析并得出漂珠細(xì)度為1.9,取代率為50%時(shí)保溫混凝土的性能最優(yōu)。
[Abstract]:Glass microbead insulation concrete has the advantages of heat preservation, load bearing, energy saving, light weight and so on. It conforms to the national building energy saving standard and has a broad application prospect. In recent years, under the background of energy saving and emission reduction, In order to meet the higher requirements of our country in building energy conservation, It is necessary to optimize the thermal insulation performance of glass microbead insulation concrete. Fly ash is a kind of industrial waste with high emission and serious environmental pollution. Drifter bead is a kind of solid waste produced in the process of combustion. It has the characteristics of high strength (about 6 times of vitrified microbeads and low thermal conductivity). Therefore, on the premise of ensuring the mechanical properties of glass microbeads thermal insulation concrete, the method of replacing sand is adopted. It is an important way to optimize its thermal insulation performance by adding drifted beads as fine aggregate into glass microbead insulation concrete. Based on the C35 grade glass microbead insulation concrete, the fineness of drifted beads is studied in this paper. The working performance and mechanical properties of glass microbead insulation concrete with substitution ratio (replacing sand), The influence law of thermal properties mainly includes: 1. Study on the effect of different drifters fineness on the properties of glass microbead insulating concrete. The working performance of three kinds of bead beads on glass microbeads insulation concrete is studied when the substitution ratio is 50. The influence of mechanical properties and thermal insulation properties on the compressive strength of insulating concrete is studied. The results show that the compressive strength of insulating concrete is adversely affected by the replacement of sand by drifters, and the decrease of compressive strength is 10.9% and 21.5m, but the thermal conductivity is obviously improved. The decrease range is 14.9% and 27.6%. The optimum heat transfer performance corresponding to the heat transfer performance of insulating concrete is 1.9.2. The effect of different replacement ratio of floating beads on the properties of glass microbead insulating concrete is studied. The working performance of glass microbead insulation concrete, The results show that the slump of insulating concrete increases first and then decreases with the increase of the replacement ratio of drift-bead, and the substitution ratio of drift-bead is 50% and 75% respectively. With the increase of the replacement ratio, the splitting tensile strength, flexural strength, axial compressive strength and elastic modulus of insulating concrete decrease. The decrease range of compressive strength is obviously increased, and it can not meet the design strength requirement. The ratio of tension to compression and the ratio of bending to compression of the insulation concrete with drifters are all higher than the reference value, and the admixture of the drifters is not satisfied with the requirements of the design strength. The ductility of insulating concrete can be improved to a certain extent.) with the increase of the replacement ratio of bleach beads, the thermal conductivity of insulating concrete decreases gradually. When the replacement ratio ranges from 25% to 100%, The decreasing range of thermal conductivity is 6.4x34.) the optimum heat transfer performance corresponding to the optimum heat transfer performance of concrete is 50. The comprehensive analysis of the fineness of drift-bead and its effect on the working performance and mechanical properties of glass bead insulation concrete, The influence law of thermal performance is obtained, and the relationship between the related performance indexes is obtained. The results show that the properties of insulating concrete are optimal when the fineness of drift-bead is 1.9 and the substitution rate is 50.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TU528
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐嘉誠(chéng);王曉飛;陸曉偉;;自保溫混凝土房屋示范工程的設(shè)計(jì)與施工[J];墻材革新與建筑節(jié)能;2008年05期
2 徐嘉誠(chéng);曲萍;陳信孚;;自保溫混凝土房屋結(jié)構(gòu)體系應(yīng)用[J];住宅產(chǎn)業(yè);2007年10期
3 閆志剛;;關(guān)于自保溫混凝土房屋結(jié)構(gòu)體系的技術(shù)經(jīng)濟(jì)分析[J];河北建筑工程學(xué)院學(xué)報(bào);2011年02期
4 郝少斌;;我國(guó)綠色建筑的現(xiàn)狀分析[J];建材技術(shù)與應(yīng)用;2013年06期
5 曲萍;徐嘉誠(chéng);;自保溫混凝土房屋結(jié)構(gòu)體系的技術(shù)研究與成果轉(zhuǎn)化[J];建設(shè)科技;2008年22期
6 卜志偉;劉華波;王曉飛;;自保溫混凝土房屋預(yù)制構(gòu)件生產(chǎn)制作工藝[J];江蘇建材;2008年04期
7 周富強(qiáng);杜薇;吳艷;古力米熱;;寒潮對(duì)保溫混凝土表面及棱角溫度的影響分析[J];混凝土;2009年05期
8 張秉良;;自保溫混凝土復(fù)合砌塊在青海玉樹(shù)地區(qū)的應(yīng)運(yùn)[J];科技風(fēng);2011年05期
9 趙曉敏;葉燕華;魏威;彭程;;自保溫混凝土砌塊砌體抗壓及抗剪性能試驗(yàn)研究[J];新型建筑材料;2010年11期
10 ;信息博采[J];墻材革新與建筑節(jié)能;2012年08期
相關(guān)會(huì)議論文 前2條
1 胡達(dá)明;;自保溫混凝土復(fù)合砌塊熱工性能檢測(cè)方法研究[A];2013年福建省暖通空調(diào)制冷學(xué)術(shù)年會(huì)論文集[C];2013年
2 趙小雨;趙林靜;;XPS板外墻保溫混凝土無(wú)網(wǎng)現(xiàn)澆系統(tǒng)的關(guān)鍵技術(shù)[A];河南省建筑業(yè)行業(yè)優(yōu)秀論文集(2009)[C];2009年
相關(guān)重要報(bào)紙文章 前4條
1 記者 洛濤;內(nèi)置保溫混凝土墻體結(jié)構(gòu)異軍突起[N];經(jīng)濟(jì)參考報(bào);2011年
2 本報(bào)記者 蒙華;材料創(chuàng)新讓混凝土建筑冬暖夏涼[N];中國(guó)建材報(bào);2013年
3 本報(bào)記者 蒙華;履行社會(huì)責(zé)任 追求和諧共生[N];中國(guó)建材報(bào);2014年
4 記者 ; 畢德鵬;綠色建筑創(chuàng)新技術(shù)前景廣闊[N];中國(guó)建材報(bào);2014年
相關(guān)博士學(xué)位論文 前1條
1 馬鋼;再生保溫混凝土剪力墻抗震性能試驗(yàn)與計(jì)算方法研究[D];太原理工大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 柴麗娟;;⒅楸鼗炷粱玖W(xué)性能及本構(gòu)關(guān)系的尺寸效應(yīng)研究[D];太原理工大學(xué);2016年
2 武智榮;基于價(jià)值工程的再生保溫混凝土建筑經(jīng)濟(jì)性分析[D];太原理工大學(xué);2016年
3 常晉;;⒅楸鼗炷量招募袅峁ば阅苎芯縖D];太原理工大學(xué);2016年
4 王振明;鐵尾礦玻化微珠保溫混凝土基本力學(xué)性能和熱工性能試驗(yàn)研究[D];太原理工大學(xué);2017年
5 張?jiān)骑w;再生保溫混凝土凍融循環(huán)后基本力學(xué)性能研究[D];太原理工大學(xué);2017年
6 劉明軍;再生保溫混凝土高剪力墻抗震性能試驗(yàn)研究[D];太原理工大學(xué);2015年
7 許家文;再生保溫混凝土粘結(jié)錨固性能試驗(yàn)研究[D];太原理工大學(xué);2015年
8 江衛(wèi)濤;不同剪跨比再生保溫混凝土剪力墻抗震性能試驗(yàn)與分析[D];太原理工大學(xué);2015年
9 呂沖飛;;⒅楸鼗炷粮邷刈饔脵C(jī)理試驗(yàn)研究[D];太原理工大學(xué);2012年
10 馮偉;;⒅楸鼗炷亮嚎箯澬阅茉囼(yàn)研究[D];太原理工大學(xué);2015年
,本文編號(hào):1653056
本文鏈接:http://sikaile.net/kejilunwen/huagong/1653056.html