嗜熱厭氧菌發(fā)酵甘蔗渣產(chǎn)氫及產(chǎn)乙醇研究
本文選題:嗜熱厭氧菌 切入點(diǎn):甘蔗渣 出處:《華南理工大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著人類對(duì)能源需求量的急劇增長,化石能源的短缺,加之化石燃料燃燒引發(fā)的一系列日益凸顯的環(huán)境問題,尋求可替代的可再生清潔能源已成為國際熱點(diǎn)議題。生物質(zhì)能(如氫氣和乙醇)以其清潔、高效和可再生的特點(diǎn),被視為21世紀(jì)最具發(fā)展?jié)摿Φ男屡d能源。利用地球上含量豐富的木質(zhì)纖維素生產(chǎn)生物質(zhì)能越來越受到世界各國的高度重視。本研究利用嗜熱厭氧梭菌(Clostridium thermocellum ATCC 27405)和嗜熱厭氧桿菌(Thermoanaerobacterium aotearoense SCUT27/Δldh)介導(dǎo)的生物降解體系,從以下幾個(gè)方面研究甘蔗渣降解產(chǎn)氫及產(chǎn)乙醇:1)CaCO_3強(qiáng)化嗜熱厭氧菌降解甘蔗渣產(chǎn)氫及產(chǎn)乙醇并進(jìn)行機(jī)理初探;2)pH控制對(duì)C.thermocellum降解甘蔗渣產(chǎn)氫影響;3)CaCO_3和非離子表面活性劑Triton X-100強(qiáng)化嗜熱厭氧菌降解甘蔗渣。CaCO_3可強(qiáng)化嗜熱厭氧菌發(fā)酵甘蔗渣產(chǎn)氫及產(chǎn)乙醇,通過對(duì)發(fā)酵工藝的優(yōu)化,以2%預(yù)處理后的甘蔗渣為發(fā)酵底物,CaCO_3添加濃度為20 mM,利用C.thermocellum進(jìn)行嗜熱厭氧發(fā)酵。氫氣產(chǎn)量最高達(dá)到97.83±5.19 mmol/L,與不添加CaCO_3對(duì)照組相比提高了116.72%。與添加CaCO_3條件下的C.thermocellum單培養(yǎng)體系相比,C.thermocellum和T.aotearoense共培養(yǎng)體系雖然在產(chǎn)氫方面沒有明顯優(yōu)勢,但乙醇產(chǎn)量有明顯提高。在最適發(fā)酵條件下,乙醇產(chǎn)量達(dá)到10.60±0.81 mM,與不添加CaCO_3的對(duì)照組相比提高了192.82%。CaCO_3對(duì)發(fā)酵液pH具有緩沖作用是其強(qiáng)化嗜熱厭氧菌降解甘蔗渣的重要原因。在500 m L機(jī)械攪拌式生物反應(yīng)器中研究了恒定pH控制和兩階段pH控制對(duì)C.thermocellum發(fā)酵產(chǎn)氫影響,發(fā)現(xiàn)pH控制方式對(duì)C.thermocellum發(fā)酵產(chǎn)氫有顯著影響:C.thermocellum發(fā)酵產(chǎn)氫的最適pH為6.0左右;在C.thermocellum代謝過程中,氫氣和發(fā)酵液中代謝產(chǎn)物(主要為乙醇和乙酸等有機(jī)酸)的生成存在競爭關(guān)系,兩者產(chǎn)量存在此消彼長的關(guān)系;兩階段pH控制方式不能進(jìn)一步有效促進(jìn)C.thermocellum發(fā)酵產(chǎn)氫。CaCO_3和非離子表面活性劑Triton X-100可共同強(qiáng)化嗜熱厭氧菌降解甘蔗渣,通過發(fā)酵條件的優(yōu)化,發(fā)酵液中的還原糖總量最高可達(dá)14.07±0.67 g/L。非離子表面活性劑Triton X-100對(duì)嗜熱厭氧菌具有毒害作用,會(huì)導(dǎo)致嗜熱厭氧菌代謝終止,但表面活性劑可提高發(fā)酵液中羧甲基纖維素酶活力、木聚糖酶活力和β-葡萄糖苷酶活力,從而提高對(duì)甘蔗渣的水解效率。本研究一方面借助廉價(jià)易得的CaCO_3強(qiáng)化嗜熱厭氧菌降解甘蔗渣產(chǎn)氫及產(chǎn)乙醇,為利用CBP途徑生產(chǎn)生物質(zhì)能提供了行之有效的方法;另一方面借助CaCO_3和非離子表面活性劑Triton X-100實(shí)現(xiàn)由嗜熱厭氧菌介導(dǎo)的生物降解體系對(duì)甘蔗渣的生物糖化,進(jìn)而進(jìn)行后續(xù)的乙醇發(fā)酵,為未來木質(zhì)纖維素的能源化提供了新思路。
[Abstract]:With the rapid growth of human demand for energy, the shortage of fossil energy, and a series of increasingly prominent environmental problems caused by fossil fuel combustion, The search for alternative renewable and clean energy has become an international hot topic. Biomass energy (such as hydrogen and ethanol) is characterized by its cleanliness, efficiency and renewability, In 21th century, it is regarded as the most potential new energy source. The production of biomass energy by using the abundant lignocellulose on the earth has been paid more and more attention in the world. In this study, we used Clostridium thermocellum ATCC 27405) and. The biodegradation system mediated by Thermoanaeracterium aotearoense SCUT27/ 螖 ldh. Study on the effect of pH Control on hydrogen production of bagasse degradation by bagasse and ethanol production by Alcohol 1 CaCO3 from bagasse degradation and ethanol production by thermophilic anaerobic bacteria and its mechanism on C. thermocellum degradation of bagasse and its effects on Caco _ 3 and Nonionic Surfactant. Triton X-100 enhanced thermophilic anaerobic degradation of bagasse. CaCOST3 enhanced thermophilic anaerobic fermentation of bagasse to produce hydrogen and ethanol. By optimizing the fermentation process, After 2% pretreatment of bagasse as fermentation substrate, the concentration of CaCO3 was 20 mm, and the thermophilic anaerobic fermentation was carried out by using C. thermocellum. The hydrogen production reached the maximum of 97.83 鹵5.19 mmol / L, which increased 116.72% compared with the control group without CaCO_3. Compared with C. thermocellum monoculture under the condition of adding CaCO_3, the hydrogen production reached a maximum of 97.83 鹵5.19 mmol / L, which was 116.72% higher than that of the control group without adding CaCO_3. Compared with C. thermocellum and T. aotearoense co-culture system, the culture system had no obvious advantage in hydrogen production. But the yield of ethanol increased obviously. Under the optimum fermentation conditions, Ethanol production reached 10.60 鹵0.81 mm, which increased the pH of fermentation broth by 192.82% compared with the control group without CaCO_3. The important reason for its enhanced thermophilic anaerobic degradation of bagasse was found in 500ml mechanically stirred bioreactor. The effects of constant pH control and two-stage pH control on hydrogen production by C. thermocellum fermentation were investigated. It was found that pH control mode had a significant effect on hydrogen production by C. thermocellum fermentation. The optimum pH for hydrogen production was about 6.0. During the metabolism of C. thermocellum, there was a competitive relationship between the production of hydrogen and metabolites (mainly organic acids such as ethanol and acetic acid) in C. thermocellum fermentation. The two-stage pH control mode could not further promote the fermentation of C. thermocellum to produce hydrogen. CaCOS3 and Nonionic surfactant Triton X-100 could enhance the degradation of bagasse by thermophilic anaerobes and optimize the fermentation conditions. The total amount of reducing sugar in fermentation broth was up to 14.07 鹵0.67 g / L. Nonionic surfactant Triton X-100 had toxic effect on thermophilic anaerobes, which would lead to the termination of thermophilic anaerobes metabolism, but surfactant could increase the activity of carboxymethyl cellulase in fermentation broth. Xylanase activity and 尾-glucosidase activity improved the hydrolysis efficiency of bagasse. On the one hand, the thermophilic anaerobic bacteria were used to enhance the degradation of hydrogen and ethanol from bagasse by cheap and easily available CaCO_3. It provides an effective method for the production of biomass energy by CBP pathway, and on the other hand, realizes the bio-saccharification of bagasse by thermophilic anaerobic-mediated biodegradation system with CaCO_3 and Nonionic surfactant Triton X-100. The subsequent ethanol fermentation provides a new idea for the energy conversion of lignocellulose in the future.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TQ116.2;TQ223.122
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高星超;盛家榮;趙星華;;甘蔗渣的研究進(jìn)展[J];廣西師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2007年04期
2 陳屸達(dá);;甘蔗渣的利用——用甘蔗渣懤酒,懤過酒的甘蔗渣做紙漿[J];化學(xué)世界;1959年01期
3 劉淑端,岳保珍,張建然,康健,黃偉華,陳文君,劉清芳;甘蔗渣除髓狀況對(duì)紙漿性質(zhì)影響的研究[J];中國造紙;1992年01期
4 葉紅,李家璜,陳彪,歐陽平凱;甘蔗渣的蒸爆及水解技術(shù)的研究[J];化工時(shí)刊;2000年10期
5 葉紅,李家璜,陳彪,歐陽平凱;甘蔗渣的蒸爆及水解技術(shù)的研究[J];化工生產(chǎn)與技術(shù);2001年03期
6 戈進(jìn)杰,吳睿,鄧葆力,施興海,王珉,李文俊;基于甘蔗渣的生物降解材料研究(Ⅰ)甘蔗渣的液化反應(yīng)和聚醚酯多元醇的制備[J];高分子材料科學(xué)與工程;2003年02期
7 梁坤,譚京梅,孫可偉;甘蔗渣的綜合利用現(xiàn)狀及展望[J];中國資源綜合利用;2003年05期
8 李克賢;黃科林;;甘蔗渣高值化應(yīng)用研究進(jìn)展[J];大眾科技;2011年02期
9 俞作袖;莫乾鳳;;關(guān)于甘蔗渣綜合利用的現(xiàn)狀及前景探析[J];輕工科技;2013年04期
10 ;甘蔗渣富強(qiáng)纖維漿粕連續(xù)生產(chǎn)工藝簡介[J];廣東化纖技術(shù)通訊;1973年03期
相關(guān)會(huì)議論文 前7條
1 馬年方;陳水挾;;甘蔗渣基螯合纖維的制備及其對(duì)汞離子的吸附[A];中國化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年
2 池汝安;余軍霞;張?jiān)椒?蘇秀珠;;改性甘蔗渣對(duì)陽離子染料廢水的處理[A];中國化工學(xué)會(huì)2009年年會(huì)暨第三屆全國石油和化工行業(yè)節(jié)能節(jié)水減排技術(shù)論壇會(huì)議論文集(下)[C];2009年
3 劉娟娟;諶凡更;馮覺純;;由甘蔗渣液化制備用于聚氨酯生產(chǎn)的多元醇[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊)[C];2009年
4 王清萍;金曉英;陳祖亮;;甘蔗渣對(duì)Pb~(2+)和Cu~(2+)的吸附[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第02分會(huì)場摘要集[C];2010年
5 王清萍;金曉英;施秀蘭;林晨;陳祖亮;;甘蔗渣對(duì)Pb~(2+)和Cu~(2+)的吸附動(dòng)力學(xué)的研究[A];第五屆全國環(huán)境化學(xué)大會(huì)摘要集[C];2009年
6 熊佰煉;張進(jìn)忠;;改性甘蔗渣吸附Cd~(2+)和Cr~(3+)的特征研究[A];第五屆全國環(huán)境化學(xué)大會(huì)摘要集[C];2009年
7 黃元波;鄭志鋒;周玲;楊曉琴;;兩種生物質(zhì)熱解特性及動(dòng)力學(xué)研究[A];第二屆中國林業(yè)學(xué)術(shù)大會(huì)——S11 木材及生物質(zhì)資源高效增值利用與木材安全論文集[C];2009年
相關(guān)重要報(bào)紙文章 前8條
1 保平;印度力推甘蔗渣發(fā)電[N];中國煤炭報(bào);2004年
2 張保平;度發(fā)電“瞄準(zhǔn)”甘蔗渣[N];經(jīng)理日報(bào);2004年
3 平遠(yuǎn);甘蔗渣可預(yù)防雞病[N];四川科技報(bào);2003年
4 平遠(yuǎn);甘蔗渣預(yù)防雞病[N];農(nóng)民日報(bào);2003年
5 記者 張新生;巴西開發(fā)出用甘蔗渣生產(chǎn)碳纖維新技術(shù)[N];科技日報(bào);2012年
6 ;用含糖秸桿制造可降解的一次性食品、衛(wèi)生用具的方法[N];中國包裝報(bào);2004年
7 記者 馬曉燕 通訊員 王淳;垃圾有償收集受歡迎[N];嘉興日報(bào);2009年
8 本報(bào)記者 梁楓;該給蔗渣許個(gè)怎樣的未來[N];中國紡織報(bào);2010年
相關(guān)碩士學(xué)位論文 前10條
1 李樂;海南香蕉莖桿和甘蔗渣收集模式與資源化利用研究[D];海南大學(xué);2014年
2 溫鍵;甘蔗渣降解菌的應(yīng)用研究及其功能基因的克隆表達(dá)[D];集美大學(xué);2015年
3 張碩;玉米芯和甘蔗渣發(fā)酵過程中穩(wěn)定性相關(guān)成分及結(jié)構(gòu)的動(dòng)態(tài)變化[D];中國農(nóng)業(yè)科學(xué)院;2015年
4 葉建勇;甘蔗渣懸浮顆粒和芽孢桿菌的添加對(duì)凡納濱對(duì)蝦(Litopenaeus vannamei)生長和養(yǎng)殖環(huán)境的影響[D];中國海洋大學(xué);2015年
5 張勝男;利用平菇處理甘蔗渣作飼料的研究[D];廣西大學(xué);2015年
6 童乃姍;蔗渣原料預(yù)處理對(duì)酶解糖化的影響[D];華南農(nóng)業(yè)大學(xué);2016年
7 田青青;嗜熱厭氧菌發(fā)酵甘蔗渣產(chǎn)氫及產(chǎn)乙醇研究[D];華南理工大學(xué);2016年
8 李艷峰;離子液體再生甘蔗渣纖維素纖維的制備及其性能研究[D];武漢紡織大學(xué);2012年
9 陳慶;改性甘蔗渣吸附水中鎘和鉛的研究[D];湘潭大學(xué);2015年
10 周鵬飛;綜合利用甘蔗渣制備低聚木糖和燃料乙醇的研究[D];暨南大學(xué);2014年
,本文編號(hào):1605475
本文鏈接:http://sikaile.net/kejilunwen/huagong/1605475.html