可溶性氟硅酸鹽的制備與應(yīng)用研究
本文選題:離子交換膜 切入點(diǎn):陽(yáng)離子膜電解法 出處:《上海應(yīng)用技術(shù)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來(lái)隨著我國(guó)化工產(chǎn)業(yè)的強(qiáng)力發(fā)展,以及世界工業(yè)的快速發(fā)展,特別是在高速發(fā)展的鋁行業(yè)的推動(dòng)下使氟化鹽的消耗量大幅度的增加,造成在世界氟化鹽市場(chǎng)的消耗量迅速增大。而氟硅酸鈉作為磷肥化工行業(yè)的副產(chǎn)物,來(lái)源簡(jiǎn)單而且價(jià)格比較低廉,易于得到,其中所含的硅資源與氟資源是一種很重要的化工資源,利用氟硅酸鈉來(lái)回收硅與氟是很有研究?jī)r(jià)值的。本文首先利用陽(yáng)離子膜電解法電解氟硅酸鈉制備出氟硅酸,然后利用氟硅酸的氨化水解反應(yīng)制備出白炭黑以及氟化氫銨,回收其中的硅資源與氟資源。再電解氟硅酸來(lái)制備可溶性過(guò)渡金屬氟硅酸鹽,并對(duì)氟硅酸銅作為鍍銅液主鹽的可行性來(lái)進(jìn)行探究。本文主要內(nèi)容包含下面幾個(gè)方面:1.使用陽(yáng)離子膜電解的方法,電解氟硅酸鈉來(lái)制備氟硅酸溶液,制備出氟硅酸。并通過(guò)與氨水氨化反應(yīng)制備二氧化硅與氟化氫銨,來(lái)證明電解氟硅酸鈉制備的溶液為氟硅酸。通過(guò)調(diào)節(jié)電解制備氟硅酸鈉的電流密度梯度,來(lái)探究制備氟硅酸的產(chǎn)率,最后發(fā)現(xiàn)在電流密度為6. 25mA/cm2時(shí),得到的二氧化硅白炭黑質(zhì)量最高,氟硅酸濃度最大,氟硅酸鈉的轉(zhuǎn)化率最高。使用先前制備的氟硅酸與氨水進(jìn)行氨化水解反應(yīng),制備二氧化硅白炭黑,并且利用XRD、IR以及EDX等表征手段對(duì)制備的二氧化硅白炭黑進(jìn)行表征分析,分析其晶型結(jié)構(gòu)、組分。證明了所制備的二氧化硅白炭黑為無(wú)定形非晶體結(jié)構(gòu),并證明了電解氟硅酸鈉制備的陽(yáng)極液為氟硅酸。使用先前制備的氟硅酸與氨水進(jìn)行氨化反應(yīng)制備氟化氫銨,并通過(guò)XRD、IR以及EDX對(duì)其晶型結(jié)構(gòu)以及組分進(jìn)行分析,證明所制備的產(chǎn)物為氟化氫銨。2.利用陽(yáng)離子膜電解氟硅酸鈉制備的氟硅酸制備可溶性過(guò)渡金屬氟硅酸鹽。并分別制備出了氟硅酸銅與氟硅酸鋅。并且利用XRD分析、熱重(TG)分析、EDX能譜分析等表征手段,證明利用陽(yáng)離子膜電解法電解氟硅酸能制備出可溶性的過(guò)渡金屬氟硅酸鹽。本文首次采用了陽(yáng)離子膜電解法來(lái)電解氟硅酸制備可溶性過(guò)渡金屬氟硅酸鹽,利用電解氟硅酸鈉制備的氟硅酸,并成功制備出了氟硅酸銅與氟硅酸鋅晶體,對(duì)于氟硅酸鈉以及氟硅酸的應(yīng)用與回收提供了一個(gè)很好的思路與方法。3.本文利用三電極體系來(lái)測(cè)試銅在常溫下氟硅酸銅溶液中的循環(huán)伏安曲線,可以看出該體系為不完全可逆反應(yīng),在0. 2067V和0. 3414V出現(xiàn)了兩個(gè)氧化峰,-0. 102V出現(xiàn)了銅的還原峰。并且隨著掃描速率的升高氧化峰電勢(shì)電位正移,還原峰電勢(shì)電位負(fù)移,且在在掃描速率為80mV/s的條件下,一價(jià)銅離子的峰面積明顯大于二價(jià)銅離子的峰面積,對(duì)鍍層的質(zhì)量影響比較大。隨著溫度的升高,氧化峰的峰寬逐漸變大,易于銅在氟硅酸銅溶液中的溶解。根據(jù)銅在常溫下氟硅酸銅溶液中的陽(yáng)極極化曲線可知,銅的電化學(xué)溶解區(qū)的電勢(shì)電位范圍為0. 053V~0. 243V,且隨著溫度的增加電化學(xué)溶解區(qū)的峰寬增大。在40℃的條件下,銅工作電極在氟硅酸銅溶液中的溶解條件最佳。結(jié)合以上條件,如果利用氟硅酸銅作為鍍銅液的主鹽還需要找到合適的條件使得銅在氟硅酸銅體系成為一種可逆體系,使得銅在氟硅酸銅溶液中的溶解與還原達(dá)到平衡。
[Abstract]:In recent years, with the strong development of China's chemical industry, and the rapid development of industry, especially to promote the rapid development of aluminum industry in the increasing consumption of substantial fluoride salt, resulting in consumption in the world market. The rapid increase of fluoride and sodium fluoride as a by-product of phosphate chemical industry the source, simple and relatively inexpensive, easy to obtain, the silicon containing fluorine resources and resources is a very important chemical resources, recycling of silicon and fluorine is very valuable to study the use of sodium fluosilicate. Firstly, using the cationic membrane electrolysis electrolysis of sodium fluosilicate prepared fluosilicic acid, and then use the ammoniation of hydrolysis of fluosilicic acid prepared silica and ammonium hydrogen fluoride, recycling the silicon and fluorine resource resources. Electrolytic preparation of fluosilicic acid soluble transition metal fluoride silicate, and copper fluoride as copper plating solution To explore the feasibility of the main salt. The main contents of this paper include the following aspects: 1. using the method of cation exchange membrane electrolysis, electrolysis of sodium fluosilicate to prepare fluorosilicic acid solution, preparing fluosilicic acid and ammonia. And through the amination reaction of preparing silica and ammonium hydrogen fluoride, to permit the electrolytic sodium fluosilicate solution system for the preparation of fluosilicic acid. The current density gradient preparation of sodium fluosilicate regulating electrolytic system, to explore the preparation of fluosilicic acid was finally found in the current density is 6. 25mA/cm2, the highest quality silica silica, the fluoride concentration of sodium fluosilicate, conversion rate is the highest. The use of previous fluorine the preparation of silicic acid and ammonia by hydrolysis, preparation of silica silica, and the use of XRD, IR and EDX characterizations of silica silica were analyzed, the analysis of the crystal structure, composition. The preparation of white carbon black silica is amorphous and amorphous structure, and it is proved that the anode electrolysis of sodium fluosilicate prepared for fluosilicic acid. Using fluosilicic acid and ammonia system previously prepared by amination in preparation of ammonium hydrogen fluoride, and through XRD, IR and EDX to analyze the crystal structure and that group, the prepared product is ammonium hydrogen fluoride.2. by ion membrane electrolysis of sodium fluosilicate preparing fluosilicic acid for preparing soluble transition metal fluoride and silicate. Were synthesized fluosilicic acid copper and zinc silicate. And the use of XRD analysis, thermogravimetric analysis (TG), EDX energy spectrum analysis by means of proof of electrolytic fluosilicic acid by using cation membrane electrolysis to prepare soluble transition metal fluoride silicate. For the first time in this paper using cationic membrane electrolysis to prepare soluble transition metal fluoride silicate to electrolytic fluorosilicic acid, sodium fluosilicate produced by electrolysis Preparation of fluosilicic acid, and successfully synthesized fluosilicic acid copper and zinc silicate crystal, the sodium fluosilicate and fluosilicic acid recovery application and provides a good idea and method of.3. using the three electrode system to test cyclic voltammetry of copper at room temperature fluorine copper silicate solution, can the system is not fully reversible reaction in 0. 2067V and 0. 3414V two oxidation peaks, -0. 102V the reduction peak of copper. And with the scan rate increased the oxidation peak potential shifts positively and the reduction peak potential shifted negatively, and at the scan rate of 80mV/s, peak area the peak area of monovalent copper ions are significantly greater than two copper ion, affecting the quality of the coating is relatively large. With the increase of temperature, the oxidation peak width becomes larger, easy to dissolve in copper fluoride copper silicate solution. According to the copper at room temperature fluorosilicic acid copper solution The anodic polarization curves of liquid in the range of potential electrochemical dissolution of copper in the area of 0. 053V to 0. 243V, and with the increase of temperature the electrochemical dissolution peak width increases. At the temperature of 40 DEG C, the dissolution conditions of copper working electrode in fluosilicic acid copper in the solution. With the best condition, if the use of copper fluoride as the main salt copper liquid also need to find the right conditions makes copper become a reversible system in fluorine copper silicate system, the copper dissolution in fluorine copper silicate solution and restore the balance.
【學(xué)位授予單位】:上海應(yīng)用技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ127.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王敏;;用磷肥副產(chǎn)氟硅酸鈉制取冰晶石[J];有機(jī)氟工業(yè);2007年03期
2 劉曉紅;王賀云;李建敏;梁志鴻;;利用磷肥副產(chǎn)物制造冰晶石[J];云南化工;2006年02期
3 任慧;屈一新;趙素合;;Reinforcement of Styrene-Butadiene Rubber with Silica Modified by Silane Coupling Agents: Experimental and Theoretical Chemistry Study[J];Chinese Journal of Chemical Engineering;2006年01期
4 王賀云,劉曉紅,梁志鴻;磷肥副產(chǎn)氟硅酸綜合利用概述[J];硫磷設(shè)計(jì)與粉體工程;2005年03期
5 梅新華;氟硅酸鈉生產(chǎn)中降低鹽耗的措施[J];磷肥與復(fù)肥;2004年04期
6 張剛,趙中偉,霍廣生,孫召明;陰極電沉積法制備鈦基生物陶瓷復(fù)合材料的研究進(jìn)展[J];稀有金屬與硬質(zhì)合金;2003年03期
7 徐南平,時(shí)鈞;我國(guó)材料化學(xué)工程研究進(jìn)展[J];化工學(xué)報(bào);2003年04期
8 周斌,王美燕;氟硅酸鈉的防結(jié)塊研究[J];化肥工業(yè);2003年02期
9 王寶民,王立久;超緩凝劑對(duì)硅酸鹽水泥水化的影響[J];建筑材料學(xué)報(bào);2003年01期
10 鄒濤;提高氟硅酸鈉得率的途徑[J];磷肥與復(fù)肥;2003年02期
相關(guān)博士學(xué)位論文 前2條
1 畢劍;鉬酸鹽系列薄膜的電化學(xué)制備及特性研究[D];四川大學(xué);2005年
2 高道江;鉬酸鹽、鎢酸鹽和鈦酸鹽薄膜的軟溶液工藝(SSP)制備技術(shù)及性能研究[D];四川大學(xué);2003年
,本文編號(hào):1594312
本文鏈接:http://sikaile.net/kejilunwen/huagong/1594312.html