磷酸燃料電池與吸收式制冷機(jī)復(fù)合系統(tǒng)性能優(yōu)化分析
發(fā)布時(shí)間:2018-03-10 03:36
本文選題:磷酸燃料電池 切入點(diǎn):復(fù)合系統(tǒng) 出處:《東華大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:21世紀(jì)是能源世紀(jì),世界各國(guó)致力于發(fā)展新的能源技術(shù)以擺脫傳統(tǒng)的化石能源帶來(lái)的環(huán)境污染,效率低下等問(wèn)題。其中分布式能源系統(tǒng),特別是以高能量密度的燃料電池為基礎(chǔ)的能源系統(tǒng),因其配置靈活,清潔環(huán)保、安全可靠等優(yōu)勢(shì),迅速成為當(dāng)今能源領(lǐng)域研究的熱點(diǎn)。未來(lái)我國(guó)將加大對(duì)智能電網(wǎng)的投資與建設(shè),小型的燃料電池冷熱電聯(lián)供項(xiàng)目因此會(huì)獲得了極大的發(fā)展前景。因此,研究燃料電池與吸收式制冷機(jī)的復(fù)合系統(tǒng)符合國(guó)家發(fā)展需求,具有實(shí)際意義。本文建立了磷酸燃料電池與吸收式制冷機(jī)的復(fù)合系統(tǒng)模型,在磷酸燃料電池輸出電能的同時(shí),釋放的余熱驅(qū)動(dòng)吸收式制冷機(jī),為一個(gè)建筑房間提供冷量。分別優(yōu)化分析了磷酸燃料電池性能與復(fù)合系統(tǒng)的制冷性能。具體工作有:第一章介紹了當(dāng)今國(guó)內(nèi)外新能源發(fā)展特點(diǎn)以及燃料電池技術(shù)的簡(jiǎn)要發(fā)展歷程,并舉例介紹了國(guó)內(nèi)外燃料電池冷熱電聯(lián)供項(xiàng)目的具體案例與研究的現(xiàn)狀。最后說(shuō)明燃料電池冷熱電聯(lián)供項(xiàng)目在我國(guó)的發(fā)展前景與研究的意義。第二章研究了磷酸燃料電池(PAFC)的工作機(jī)理,通過(guò)熱力學(xué)分析得出燃料電池可逆電壓,電化學(xué)分析得出使電池實(shí)際電壓下降的三種過(guò)電勢(shì):活化過(guò)電勢(shì)、濃度過(guò)電勢(shì)、歐姆過(guò)電勢(shì)?紤]了燃料電池內(nèi)部不可逆損失,分析了不同工作參數(shù)例如溫度、壓力、電解質(zhì)濃度等對(duì)燃料電池性能的影響,得到了燃料電池實(shí)際電壓與熵產(chǎn)率。第三章建立了相比三熱源循環(huán)系統(tǒng)更貼近于實(shí)際制冷循環(huán)的四熱源的吸收式制冷機(jī)模型。分析多種工作參數(shù)對(duì)制冷機(jī)性能的影響并優(yōu)化了其制冷量、性能系數(shù),同時(shí)給出了不同工作條件下的優(yōu)化電流密度區(qū)間。將冷量轉(zhuǎn)換為等效功量,計(jì)算該復(fù)合系統(tǒng)的等效功率與效率,結(jié)果顯示,效率隨著電流密度增加而下降,而復(fù)合系統(tǒng)功率存在極值。由于最大制冷量對(duì)應(yīng)的電流密度要小于最大輸出功率時(shí)的對(duì)應(yīng)電流密度,有多余熱量沒(méi)有被利用,為增加系統(tǒng)能量使用效率,提出了利用熱水系統(tǒng)收集燃料電池位于高電流密度區(qū)所釋放的多余熱量。通過(guò)計(jì)算顯示該方法提升了系統(tǒng)效率約為10%。第四章建立了制冷空間的非穩(wěn)態(tài)傳熱模型,得到了房間溫度隨時(shí)間變化的關(guān)系,并設(shè)定了目標(biāo)溫度TSET,優(yōu)化達(dá)到目標(biāo)溫度的時(shí)間量。分析了不同不可逆因子、工作溫度、冷凝器吸收器熱量分配率、以及墻體熱導(dǎo)率對(duì)非穩(wěn)態(tài)的影響,對(duì)比得到,不可逆因子與溫度對(duì)非穩(wěn)態(tài)性能影響較大,而冷凝器吸收器熱量分配率影響較小。不同的工作條件下,達(dá)到目標(biāo)溫度所允許的電流密度區(qū)間不同。與穩(wěn)態(tài)特性不同,優(yōu)化非穩(wěn)態(tài)特性要求更小的電流密度區(qū)間。第五章則對(duì)本文研究?jī)?nèi)容做出總結(jié),分析羅列了本文研究的優(yōu)點(diǎn)與缺點(diǎn)。為本文的今后研究方向提出了相關(guān)看法與展望。
[Abstract]:Twenty-first Century is the energy century, the world is committed to the development of new energy technologies to get rid of traditional fossil energy environmental pollution problems, the efficiency is low. The distributed energy system, especially energy system with high energy density of fuel cells as the foundation, because of its flexible configuration, clean, safe and reliable advantages. Quickly become a hot topic in the research fields of energy. The future of our country will increase the investment and construction of the smart grid, cooling heating and small fuel cell cogeneration project so it will get great development prospect. Therefore, study on complex system of fuel cell and refrigerating machine meets the demand of national development, has practical significance. The system model is established in this paper for phosphoric acid fuel cell and refrigerating machine, the phosphoric acid fuel cell output power at the same time, absorption chiller driven heat release, as a The building room cooling capacity. Optimizing refrigeration performance of phosphoric acid fuel cell performance and composite system are analyzed. The details are as follows: the first chapter introduces briefly the development course of the current domestic and foreign development characteristics of new energy and fuel cell technology, and introduces the specific case and research status at home and abroad of fuel cell cogeneration project at last that fuel cell cogeneration project in China's development prospects and research significance. The second chapter studies the phosphoric acid fuel cell (PAFC) of the working mechanism, the fuel cell can be obtained by thermodynamic analysis of inverse voltage, electrochemical analysis of three kinds of potential as battery voltage drop: activation overpotential. The concentration overpotential, ohmic overpotential. Considering the fuel cell internal irreversibility, analysis of different working parameters such as temperature, pressure, concentration of electrolyte for fuel cell The influence of the actual fuel cell voltage and the entropy production. The third chapter established compared three heat source absorption refrigeration cycle system model more close to the reality of the four heat source refrigeration cycle. Analysis of various working parameters influence on the performance of the refrigerator and optimize its cooling capacity, coefficient of performance, and gives the optimization of current the density range under different working conditions. The cooling load is converted to an equivalent amount of reactive power, calculation of equivalent power and efficiency of the composite system. The results show that the efficiency decreases with the increase of current density, while the composite system has extreme power. Because the corresponding current density corresponding to the maximum cooling capacity is lower than the maximum output power. There is no excess heat is used to increase the system energy efficiency, the excess heat collecting fuel cell at high current density region released by hot water system is put forward. The calculated results show that the proposed method improves the system efficiency established unsteady heat transfer model of refrigeration space is about 10%. in the fourth chapter, the relationship between room temperature change with time, and set the target temperature TSET, optimizing the amount of time to reach a target temperature. Analysis of different irreversible factor, working temperature, condenser absorber heat distribution rate well, the wall thermal conductivity effect on non steady state contrast, irreversible factor and temperature had great effects on the non steady state performance, while the condenser absorber heat distribution was less affected. Different working conditions, the current density reaches the target temperature interval allowed. Unlike steady-state characteristics, current density interval optimization requires a smaller non the steady state characteristics. The fifth chapter makes a summary of the contents of this paper, analysis the advantages and disadvantages are listed in this paper. For the future study of this paper to put forward The relevant views and prospects.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM911.4;TB651
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 隋靜,黃紅良,李偉善,陳紅雨,黃啟明,梁甫堅(jiān),李碧蓮;中日合作番禺200kW磷酸燃料電池電站概況[J];電源技術(shù);2005年04期
2 黃紅良;隋靜;李偉善;陳紅雨;黃啟明;梁甫堅(jiān);李碧蓮;;番禺200kW磷酸燃料電池發(fā)電系統(tǒng)的脫硫設(shè)施[J];廣東化工;2006年09期
3 黃紅良;隋靜;李偉善;黃啟明;梁甫堅(jiān);李碧蓮;;中日合作番禺200kW磷酸燃料電池運(yùn)行數(shù)據(jù)分析[J];電源技術(shù);2007年01期
4 譚鐵鵬;磷酸燃料電池發(fā)電技術(shù)的開(kāi)發(fā)及其實(shí)用化介紹[J];新疆環(huán)境保護(hù);1997年02期
5 \〖魏,
本文編號(hào):1591614
本文鏈接:http://sikaile.net/kejilunwen/huagong/1591614.html
最近更新
教材專著