富氧水制備裝置的設計和試驗研究
本文選題:富氧水 切入點:螺旋切割技術 出處:《江南大學》2017年碩士論文 論文類型:學位論文
【摘要】:富氧水廣泛應用在食品加工,水產養(yǎng)殖,污水處理等領域,為了滿足制備富氧水對低成本,大產量,含氧高的要求,本文采用靜態(tài)螺旋切割細分子化技術,開發(fā)了高效富氧水制備裝置,具有能耗低,富氧效果好等優(yōu)點。而且,目前的機械攪拌法、電解法,溶氣釋氣等富氧水制備方法,因其設備投資成本大,結構復雜,其產量或富氧水平甚至不能夠滿足工業(yè)生產的需要。因此有必要對富氧水制備技術進行更進一步的研究。本文基于氣液兩相流模型和計算流體力學,首先通過仿真模擬的手段探究靜態(tài)螺旋切割器對管道內氣液兩相流的影響,然后使用設計的實驗樣機進行制備富氧水的試驗,分析影響制備富氧水含氧量的因素,并根據(jù)各主要因素最佳參數(shù)范圍,采用單因素和正交試驗法對各工藝參數(shù)進行優(yōu)化。創(chuàng)建的新型靜態(tài)螺旋切割器,其腔芯是由若干切割刀片按一定的螺旋線方程螺旋疊加而成,構成空間任意兩點都不連續(xù)的空間螺旋切割面。氣液兩相流以一定的壓力或流速流經切割腔時,腔芯表面的高剪切力和腔內湍流將氣泡切割細化成微納米氣泡(直徑≤10μm),經氣液傳質強化作用,從而實現(xiàn)氧氣過飽和溶解于水中。具體研究內容如下:1.分析富氧水制備原理及氣液傳質特性;跉庖簜髻|理論,重點設計計算并制造了靜態(tài)螺旋切割器,分析其功能,以及對加氣方式進行了研究設計,然后再設計選取其它相關部件,并最終完成了富氧水制備樣機的研制,并對所設計樣機的富氧性能進行理論研究;2.基于有限元ANSYS Fluent分析軟件采用計算流體力學方法,對關鍵部件—靜態(tài)螺旋切割器進行數(shù)值模擬仿真,分析了在變壓力、變流量的情況下,靜態(tài)螺旋切割器對管道內氣液兩相流壓力和流速的影響,以及對氣液傳質的影響。從理論上認識靜態(tài)螺旋切割器的剪切和湍流性能;3.通過單因素試驗研究了主要因素對制備富氧水含氧量的影響,探究和分析各因素對溶氧的影響,發(fā)現(xiàn)其變化是先逐漸增大,后趨勢平緩。然后選取單因素試驗效果較好的參數(shù)范圍進行正交試驗設計,通過極差分析和方差分析表明各因素對制備富氧水含氧量影響強弱排序依次是,水的壓力氧氣流量水的流量氧氣壓力。由正交試驗找到了制備高含氧量富氧水的最優(yōu)工藝參數(shù)組合即氣體流量為0.9 L/min,氣體壓力為0.2MPa,水的流量為0.7 m3/h,水的壓力為0.4 MPa。以氧氣作為氣體介質時,利用最佳參數(shù)組合制備的富氧水含氧量可達45.12 mg/L,較優(yōu)化前提高了32.40%;4.基于微納米氣泡的穩(wěn)定性,通過對貯存富氧水溶氧的衰減性分析,發(fā)現(xiàn)本裝置制備的富氧水在保存良好的情況下,雖隨著時間推移,溶氧會有一定的散失,但在保存60d以后,仍然會具有較高水平的溶氧量(20 mg/L以上),可以滿足工業(yè)、食品發(fā)酵等領域的技術需求。理論和試驗研究證明本文創(chuàng)建的新型靜態(tài)螺旋切割器可高效產生微納米量級的小氣泡,氧氣的溶解度高,成本低,富氧效果顯著。
[Abstract]:Oxygen rich water is widely used in food processing, aquaculture, sewage treatment and other fields, in order to meet the preparation of oxygen enriched water on low cost, high yield, high oxygen content, this paper adopts a static spiral cutting fine molecular technology, developed high efficient oxygen enriched water preparation device has advantages of low energy consumption, good effect of oxygen. Moreover, electrolysis current mechanical stirring method, gas release, oxygen rich water preparation method of dissolved gas, because of its high investment, complex structure, its production or levels of oxygen enrichment can not even meet the needs of industrial production. So it is necessary to further study the preparation technology of oxygen enriched water system. This model and computational fluid dynamics based on the two-phase flow, first through the simulation method of static spiral cutter on influence of gas-liquid two-phase flow in the pipe, and then use the prototype to test the preparation of oxygen rich water, analysis. The influencing factors for preparation of oxygen enriched water oxygen, and according to the main factors of the range of parameters, process parameters were optimized by single factor and orthogonal test method. The static model of spiral cutter is created, the cavity core is composed of a plurality of cutting blades according to certain equations of spiral helix stacking, consisting of arbitrary points in space the spiral is discontinuous cutting surface. The gas-liquid two-phase flow with certain pressure or flow through the cut cavity, the cavity core surface of high shear and turbulence will be refined into a cavity bubble cutting micro nano bubbles (diameter less than 10 m), mass transfer enhancement by liquid, so as to realize oxygen supersaturated dissolved in water. The specific contents are as follows: 1. analysis of oxygen enriched water preparation principle and mass transfer characteristics of gas-liquid mass transfer. Based on the theory, focus on the design and manufacture of spiral cutter, static calculation, analysis the function, and the way of filling The research and design, and then select the design of other related parts, and finally completed the development of oxygen enriched water preparation, and theoretical research on the oxygen performance of the designed prototype; 2. ANSYS Fluent based on finite element analysis software by using CFD method, the key part of the static spiral cutter carried out numerical simulation analysis in variable pressure variable flow under the condition of static spiral cutter on pressure and velocity of gas-liquid two-phase flow in the pipeline, and the effect on the gas-liquid mass transfer. The shear and turbulence properties of spiral cutter from the theory of static understanding; 3. through the influence of single factor experiment to study the main factors on the preparation of oxygen enriched water oxygen the exploration and analysis of influencing factors of dissolved oxygen, it is found that the change is gradually increased, after the trend gently. And then select the parameter range effect test of single factor orthogonal better Test design by range analysis and variance analysis showed that the factors of oxygen enriched water preparation system strength sorting is the flow of water pressure, oxygen flow rate of oxygen pressure of the water. By the orthogonal test to find the optimal combination of process parameters for preparation of high oxygen enriched water or gas flow is 0.9 L/min, gas pressure 0.2MPa, the water flow is 0.7 m3/h, the water pressure is 0.4 MPa. with oxygen as the gas medium, using oxygen enriched water optimal combination of preparation of oxygen can reach 45.12 mg/L was 32.40% higher than before optimization; the 4. is based on the stability of micro nano bubbles, based on the analysis of attenuation of dissolved oxygen enriched water storage, found the device for preparing oxygen enriched water in the preservation of good, although with the passage of time, there will be some loss of oxygen, but in the preservation of 60d, the amount of dissolved oxygen will still have high level (more than 20 mg/ L), can be full of The technology demand of foot industry, food fermentation and other fields is discussed. Theoretical and experimental studies have proved that the new static spiral cutter created in this paper can produce small and micro bubbles with high efficiency. The oxygen solubility is high, the cost is low, and the effect of oxygen enrichment is remarkable.
【學位授予單位】:江南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ123.5
【參考文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 李恒震;胡黎明;辛鴻博;;微納米氣泡技術應用于污染地下水原位修復研究[J];巖土工程學報;2015年S2期
2 宋萍;;溶解氧及其對水產養(yǎng)殖的意義(下)[J];科學養(yǎng)魚;2013年02期
3 曹仲文;袁惠新;;旋流反應器中兩相相對運動特性研究[J];礦山機械;2012年12期
4 馬洪運;賈志軍;吳旭冉;廖斯達;王保國;;電化學基礎(Ⅰ)——物質守恒與法拉第定律及其應用[J];儲能科學與技術;2012年02期
5 靳明偉;丁建寧;凌智勇;陳雨;;超微細氣泡水體修復技術[J];功能材料與器件學報;2008年01期
6 陳致泰;李世剛;韓光瑤;謝有暢;;微氣泡純氧曝氣技術用于河湖復氧治理[J];水科學與工程技術;2008年01期
7 陳致泰;李世剛;韓光瑤;謝有暢;;河湖復氧微氣泡純氧曝氣技術介紹[J];北京水務;2008年01期
8 王猛;張安龍;郝建昌;;低壓供氣式射流器的性能研究[J];中華紙業(yè);2008年04期
9 張琳;瞿金平;李建波;;振動力場強化單螺桿擠出固體輸送的離散單元法模擬[J];中國機械工程;2006年22期
10 文武;;富氧水[J];污染防治技術;2005年04期
中國碩士學位論文全文數(shù)據(jù)庫 前3條
1 劉季霖;微納米氣泡發(fā)生裝置研究[D];浙江大學;2012年
2 張興旺;CAGD中可展曲面設計和球域Bézier曲線的研究[D];浙江大學;2006年
3 李海鵬;微氣泡生成與富氧凈化系統(tǒng)研究[D];南京航空航天大學;2005年
,本文編號:1580284
本文鏈接:http://sikaile.net/kejilunwen/huagong/1580284.html