承重型橫孔連鎖混凝土砌塊砌體的抗壓性能
本文關(guān)鍵詞: 承重型橫孔連鎖混凝土砌塊砌體 抗壓強(qiáng)度 彈性模量 有限元分析 出處:《蘭州大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本文在口字形混凝土橫孔連鎖砌塊的基礎(chǔ)上,通過(guò)塊型的優(yōu)化設(shè)計(jì),提出了BH-290、BH-240、BT-240三種類型的承重型橫孔連鎖混凝土砌塊體系,該砌塊不僅能夠應(yīng)用于承重墻結(jié)構(gòu),而且具有施工技術(shù)要求低和施工速度快的優(yōu)點(diǎn)。目前,課題組僅對(duì)該砌塊的物理力學(xué)性能進(jìn)行了研究和分析。本文在前期研究的基礎(chǔ)上,對(duì)承重型橫孔連鎖混凝土砌塊砌體的抗壓性能進(jìn)行了試驗(yàn)研究,并通過(guò)ABAQUS非線性有限元模擬,對(duì)砌體的抗壓強(qiáng)度和彈性模量進(jìn)行了分析與討論。具體研究?jī)?nèi)容與結(jié)論如下:首先,進(jìn)行了砌塊、混凝土和砂漿的抗壓強(qiáng)度試驗(yàn)。結(jié)果表明:砌塊的抗壓強(qiáng)度均滿足規(guī)范規(guī)定的MU10承重型砌塊的抗壓強(qiáng)度要求。其次,進(jìn)行了砌體單軸抗壓試驗(yàn),分析了砌體的破壞形式、初裂荷載、破壞荷載以及抗壓強(qiáng)度。結(jié)果表明:三種砌塊砌體的裂縫均集中在砌體側(cè)面的橫肋與縱肋交接處,以及正面的中心線附近,且三種砌塊砌體均表現(xiàn)出了脆性破壞的特征;砌體的抗壓強(qiáng)度均隨著砂漿強(qiáng)度的增加而增加,砂漿的強(qiáng)度對(duì)砌體的抗壓性能有著不可忽略的影響。通過(guò)分析砌體抗壓強(qiáng)度試驗(yàn)數(shù)據(jù),擬合了砌體抗壓強(qiáng)度的計(jì)算公式,并將砌體抗壓強(qiáng)度計(jì)算值與試驗(yàn)值進(jìn)行對(duì)比分析。結(jié)果表明:計(jì)算值與試驗(yàn)值兩者吻合較好,擬合的砌體抗壓強(qiáng)度的計(jì)算公式適合在工程實(shí)踐中應(yīng)用。同時(shí),通過(guò)分析砌塊和砂漿的變形特性,推導(dǎo)了砌體的彈性模量計(jì)算公式,并得到了砌體的彈性模量。最后,建立了砌體的有限元模型并進(jìn)行了模擬分析。結(jié)果表明:兩種類型砌塊砌體應(yīng)力較大值的位置均發(fā)生在縱肋上,且砌體的抗壓強(qiáng)度模擬值與試驗(yàn)值相差不大。有限元模擬的砌體彈性模量均大于推導(dǎo)的砌體彈性模量,表明實(shí)際工程中應(yīng)用的砌體存在部分缺陷,導(dǎo)致兩者之間存在一些不可避免的誤差。通過(guò)分析不同材料強(qiáng)度的砌體抗壓強(qiáng)度模擬值,建議不同混凝土強(qiáng)度的砌塊砌體均采用Mb10的砂漿強(qiáng)度等級(jí)。
[Abstract]:In this paper, on the basis of zigzag concrete cross hole interlocking block, through the optimization design of block type, three types of heavy bearing cross hole linked concrete block system, BH-290 BH-240 and BT-240, are put forward. The block can not only be applied to the bearing wall structure. Moreover, it has the advantages of low technical requirements and fast construction speed. At present, the physical and mechanical properties of the block are only studied and analyzed by the research group. In this paper, the compressive performance of the concrete block masonry with heavy-duty transverse holes is studied, and the nonlinear finite element simulation of the masonry is carried out by means of ABAQUS. The compressive strength and elastic modulus of masonry are analyzed and discussed. The concrete research contents and conclusions are as follows: first, the block, Tests on compressive strength of concrete and mortar. The results show that the compressive strength of block meets the compressive strength requirements of MU10 heavy block as stipulated in the code. Secondly, uniaxial compression test of masonry is carried out, and the failure mode of masonry is analyzed. The results show that the cracks of the three masonry blocks are located at the junction of transverse rib and longitudinal rib on the side of the masonry, and near the center line of the front. The compressive strength of masonry increases with the increase of mortar strength. The strength of mortar has an unnegligible effect on the compressive strength of masonry. By analyzing the experimental data of masonry compressive strength, the formula for calculating the compressive strength of masonry is fitted. The calculated value of masonry compressive strength is compared with the experimental value. The results show that the calculated value is in good agreement with the experimental value, and the fitted formula of masonry compressive strength is suitable for application in engineering practice. By analyzing the deformation characteristics of block and mortar, the formula for calculating the elastic modulus of masonry is derived, and the elastic modulus of masonry is obtained. The finite element model of masonry is established and simulated. The results show that the position of larger stress of masonry in two types of blocks occurs on longitudinal ribs. The simulation value of masonry compressive strength is not different from the experimental value. The elastic modulus of masonry simulated by finite element method is larger than that of masonry masonry, which indicates that there are some defects in the masonry used in practical engineering. By analyzing the simulated values of compressive strength of masonry with different material strength, it is suggested that the mortar strength grade of Mb10 should be used in masonry with different concrete strength.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU522.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王政;張敬書(shū);趙俊;劉樂(lè);劉海興;張偉鵬;;承重型橫孔連鎖混凝土砌塊的物理力學(xué)性能[J];混凝土與水泥制品;2016年06期
2 吳方伯;任煥青;劉彪;李鈞;;新型混凝土橫孔空心砌塊砌體受壓性能研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年11期
3 張廣平;王麗;李玉潤(rùn);朱殿之;奚增紅;黎信棉;;橫孔連鎖混凝土砌塊在升壓站主控樓的應(yīng)用[J];墻材革新與建筑節(jié)能;2015年09期
4 張敬書(shū);劉海興;王麗;司偉龍;李楊;趙俊;;自承重橫孔連鎖混凝土空心砌塊研究及應(yīng)用現(xiàn)狀[J];建筑砌塊與砌塊建筑;2015年04期
5 苑振芳;楊晶;;我國(guó)砌體結(jié)構(gòu)的發(fā)展和展望[J];建筑結(jié)構(gòu);2014年15期
6 周曉潔;王楚楚;孟憲鑫;李陽(yáng);楊月;范文濤;;粉煤灰自保溫空心砌塊砌體抗壓性能試驗(yàn)研究[J];建筑技術(shù)開(kāi)發(fā);2014年03期
7 陳偉;周緒紅;吳方伯;黃海林;徐靜;;新型混凝土橫孔空心砌塊砌體基本受力性能試驗(yàn)研究[J];工業(yè)建筑;2011年12期
8 郭樟根;孫偉民;彭陽(yáng);劉佳亮;;再生混凝土小型空心砌塊砌體受壓性能試驗(yàn)研究[J];建筑結(jié)構(gòu);2011年08期
9 吳方伯;陳偉;黃海林;周緒紅;;新型混凝土橫孔空心砌塊砌體受壓性能研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年11期
10 陳良;郭玉榮;黃靚;陶承志;肖巖;李瑞岸;許純良;;N式砌塊砌體受壓性能研究[J];工業(yè)建筑;2008年07期
相關(guān)會(huì)議論文 前1條
1 施楚賢;;影響磚砌體抗壓強(qiáng)度的幾個(gè)因素[A];砌體結(jié)構(gòu)研究論文集[C];1988年
相關(guān)博士學(xué)位論文 前1條
1 劉桂秋;砌體結(jié)構(gòu)基本受力性能的研究[D];湖南大學(xué);2005年
相關(guān)碩士學(xué)位論文 前3條
1 趙俊;承重型橫孔連鎖混凝土小型空心砌塊基本性能試驗(yàn)研究[D];蘭州大學(xué);2015年
2 王先麗;PK多功能混凝土空心砌塊試驗(yàn)研究[D];湖南大學(xué);2008年
3 陳海龍;一種新型承重砌塊砌體基本力學(xué)性能研究[D];湖南大學(xué);2008年
,本文編號(hào):1494417
本文鏈接:http://sikaile.net/kejilunwen/huagong/1494417.html