長江口及鄰近海域表層懸浮泥沙與漫衰減系數(shù)的遙感估算
發(fā)布時(shí)間:2021-01-31 12:21
水質(zhì)量是衡量影響河口海岸區(qū)域生態(tài)環(huán)境的重要指標(biāo)。而懸浮泥沙濃度和漫衰減系數(shù)均是影響水質(zhì)量的關(guān)鍵參數(shù)之一。但是實(shí)地監(jiān)測或者設(shè)立臺站耗時(shí)耗力成本巨大,且測量數(shù)據(jù)區(qū)域代表性尚待考究,亟需準(zhǔn)確低廉的大面遙感監(jiān)測補(bǔ)充。準(zhǔn)確性和時(shí)效性是實(shí)施遙感監(jiān)測的前提,本文圍繞實(shí)測數(shù)據(jù)和衛(wèi)星遙感圖像處理兩個(gè)最主要的環(huán)節(jié),對遙感監(jiān)測懸浮泥沙和漫衰減系數(shù)的準(zhǔn)確性展開深入研究,并探討了時(shí)效性解決方案。本文第二部分圍繞實(shí)測數(shù)據(jù)獲取與處理過程,介紹了海洋調(diào)查船測量水體光學(xué)性質(zhì)過程及所用儀器,總結(jié)和對比了6種光譜數(shù)據(jù)的獲取和處理模型,創(chuàng)新地發(fā)展了適合渾濁水體的生物光學(xué)模型,總結(jié)對比了28種適合渾濁水體的遙感反演算法。準(zhǔn)確的實(shí)測數(shù)據(jù)至少可以滿足兩方面的需求:1)生物光學(xué)模型建立和驗(yàn)證需要準(zhǔn)確地實(shí)測水體光學(xué)性質(zhì),例如固有光學(xué)量(IOPs)、幾何條件等等;2)大氣校正之后的衛(wèi)星信號轉(zhuǎn)化為準(zhǔn)確的遙感反射率(Rrs(λ))等。本文簡單介紹了海洋遙感實(shí)地調(diào)查過程中常用的幾種儀器和操作過程中應(yīng)注意的問題。本文總結(jié)對比了Mobley model (MM), Whitlock model (M), Ruddick-Mobley mode1(...
【文章來源】:華東師范大學(xué)上海市 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:99 頁
【學(xué)位級別】:碩士
【文章目錄】:
論文摘要
Abstract
Ch.1. Introduction
1.1. Research Significance
1.2. The Research Progress in the Water Quality Satellite Remote Sensing
1.2.1 The Research Progress of Radiometric Measurement
1.2.2 The Research Progress of Retrieval of SSC
d(λ)"> 1.2.3 The Research Progress of Retrieval of Kd(λ)
1.2.4 The Research Progress of Atmospheric Correction
1.2.5 The Research Progress of Fast Computing
d(λ)"> 1.2.6 The Research Progress of Temperal and Spatial Analysis of SSC and Kd(λ)
1.3. The Innovation of the Current Study
Ch.2. Retrieval Algorithm based on Field Measurement
2.1. Research Region and Material
2.2. Field Data Collection
2.2.1. Above Water Radiometric Measurements
2.2.2. In-Water Measurements
2.2.3. SSC Measurements
rs(λ) and ρsky(λ) from Radiometric Measurements"> 2.3. Deriving Rrs(λ) and ρsky(λ) from Radiometric Measurements
2.3.1. Description of the Literature Models
rs(λ) Radiometric Models"> 2.3.2. Results Comparison of Applying Different Rrs(λ) Radiometric Models
2.4. Modeling SSC Relative to the Spectral Remote-Sensing Reflectance
2.4.1. Relationship between SSC and IOPs
rs(λ), IOPs and measurement geometry conditions"> 2.4.2 Relationships between the rrs(λ), IOPs and measurement geometry conditions
rs(λ) and Rrs(λ)"> 2.4.3 Relationships between the rrs(λ) and Rrs(λ)
rs(λ) and SSC"> 2.4.4 Relationships between the Rrs(λ) and SSC
rs(λ)"> 2.5. SSC retrieval algorithm from Rrs(λ)
rs(λ) versus SSC Relationships"> 2.5.1. Comparison between Different Empirical Rrs(λ) versus SSC Relationships
Ch.3. Satellite Image Processing Algorithm
3.1. The Current Situatuation with the Atmospheric Radiative Transfer Modeling
3.2. The Variable Precipitable Water Vapor(PWV) and Total Column Ozone (TCO)
3.3. A Simplified Analytical Atmospheric Radiative Transfer Model
3.3.1. Analytical Atmospheric Radiative Transfer Modeling
3.3.2. Comparison between the 6S and the Analytical Model (AA)
3.4. The commonly Used Approach of Atmospheric Correction
3.4.1. The Black Ocean Approach for Clear Water
3.4.2. Strategy of Combined NIR-SWIR Approach for Clear and Turbid Water
3.4.3. Strategy of "Best Fit" Algorithm
3.5. Generation of Lookup Tables
3.6. Modified NIR-SWIR Approach
3.6.1. Modified NIR-SWIR algorithm
3.6.2. Compared Modified NIR-SWIR Result with Field Measurement and MOD09 products
3.7. Cloud Mask
3.8. Destriping
Ch.4. Date Computing Part of Real-time Monitoring System
4.1. Background
4.2. The Image Processing in Real-time Monitoring System
4.3. Variable Data Format Input
4.4. GPUs accelerate image processing
d Temperal and Spatial Anaysis"> 4.5. MODIS-based SSC & Kd Temperal and Spatial Anaysis
Conclusions and Prospect
結(jié)論和展望
The Published Papers
Acknowledgements
References
Appendix
1. The abbreviations, physical parameters, and their units
【參考文獻(xiàn)】:
期刊論文
[1]基于GPU并行運(yùn)算的高效雷達(dá)成像譜估計(jì)算法[J]. 賈偉偉,張啟梅,許小劍. 制導(dǎo)與引信. 2014(04)
[2]杭州灣HJ CCD影像懸浮泥沙遙感定量反演[J]. 劉王兵,于之鋒,周斌,蔣錦剛,潘玉良,凌在盈. 遙感學(xué)報(bào). 2013(04)
[3]Spatial distribution of penetration depth in Taihu Lake (China) during spring and autumn[J]. 趙巧華,魏瀛珠,歐陽瀟然. Chinese Journal of Oceanology and Limnology. 2013(04)
[4]Application of MODIS data in monitoring suspended sediment of Taihu Lake,China[J]. 蔣興偉,唐軍武,張民偉,馬榮華,丁靜. Chinese Journal of Oceanology and Limnology. 2009(03)
[5]Retrieval of suspended sediment concentrations in the turbid water of the Upper Yangtze River using Landsat ETM+[J]. WANG JianJun~(1+) LU XiXi~1 ZHOU Yue~2 1 Department of Geography,National University of Singapore,10 Kent Ridge Crescent,119260 Singapore; 2 Department of Environmental Science,Kunming University of Science and Technology,Kunming 650093,China. Chinese Science Bulletin. 2007(S2)
[6]水體光譜測量與分析Ⅰ:水面以上測量法[J]. 唐軍武,田國良,汪小勇,王曉梅,宋慶君. 遙感學(xué)報(bào). 2004(01)
[7]Seasonal,neap-spring variation of sediment concentration in the joint area between Yangtze Estuary and Hangzhou Bay[J]. 陳沈良. Science in China(Series B). 2001(S1)
[8]Remote sensing analysis of surface suspended sediment concentration in the Changjiang Estuary[J]. 何青,惲才興,時(shí)偉榮. Progress in Natural Science. 1999(06)
[9]長江河口最大渾濁帶的泥沙特性和輸移規(guī)律[J]. 李九發(fā),時(shí)偉榮,沈煥庭. 地理研究. 1994(01)
本文編號:3010859
【文章來源】:華東師范大學(xué)上海市 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:99 頁
【學(xué)位級別】:碩士
【文章目錄】:
論文摘要
Abstract
Ch.1. Introduction
1.1. Research Significance
1.2. The Research Progress in the Water Quality Satellite Remote Sensing
1.2.1 The Research Progress of Radiometric Measurement
1.2.2 The Research Progress of Retrieval of SSC
d(λ)"> 1.2.3 The Research Progress of Retrieval of Kd(λ)
1.2.4 The Research Progress of Atmospheric Correction
1.2.5 The Research Progress of Fast Computing
d(λ)"> 1.2.6 The Research Progress of Temperal and Spatial Analysis of SSC and Kd(λ)
1.3. The Innovation of the Current Study
Ch.2. Retrieval Algorithm based on Field Measurement
2.1. Research Region and Material
2.2. Field Data Collection
2.2.1. Above Water Radiometric Measurements
2.2.2. In-Water Measurements
2.2.3. SSC Measurements
rs(λ) and ρsky(λ) from Radiometric Measurements"> 2.3. Deriving Rrs(λ) and ρsky(λ) from Radiometric Measurements
2.3.1. Description of the Literature Models
rs(λ) Radiometric Models"> 2.3.2. Results Comparison of Applying Different Rrs(λ) Radiometric Models
2.4. Modeling SSC Relative to the Spectral Remote-Sensing Reflectance
2.4.1. Relationship between SSC and IOPs
rs(λ), IOPs and measurement geometry conditions"> 2.4.2 Relationships between the rrs(λ), IOPs and measurement geometry conditions
rs(λ) and Rrs(λ)"> 2.4.3 Relationships between the rrs(λ) and Rrs(λ)
rs(λ) and SSC"> 2.4.4 Relationships between the Rrs(λ) and SSC
rs(λ)"> 2.5. SSC retrieval algorithm from Rrs(λ)
rs(λ) versus SSC Relationships"> 2.5.1. Comparison between Different Empirical Rrs(λ) versus SSC Relationships
Ch.3. Satellite Image Processing Algorithm
3.1. The Current Situatuation with the Atmospheric Radiative Transfer Modeling
3.2. The Variable Precipitable Water Vapor(PWV) and Total Column Ozone (TCO)
3.3. A Simplified Analytical Atmospheric Radiative Transfer Model
3.3.1. Analytical Atmospheric Radiative Transfer Modeling
3.3.2. Comparison between the 6S and the Analytical Model (AA)
3.4. The commonly Used Approach of Atmospheric Correction
3.4.1. The Black Ocean Approach for Clear Water
3.4.2. Strategy of Combined NIR-SWIR Approach for Clear and Turbid Water
3.4.3. Strategy of "Best Fit" Algorithm
3.5. Generation of Lookup Tables
3.6. Modified NIR-SWIR Approach
3.6.1. Modified NIR-SWIR algorithm
3.6.2. Compared Modified NIR-SWIR Result with Field Measurement and MOD09 products
3.7. Cloud Mask
3.8. Destriping
Ch.4. Date Computing Part of Real-time Monitoring System
4.1. Background
4.2. The Image Processing in Real-time Monitoring System
4.3. Variable Data Format Input
4.4. GPUs accelerate image processing
d Temperal and Spatial Anaysis"> 4.5. MODIS-based SSC & Kd Temperal and Spatial Anaysis
Conclusions and Prospect
結(jié)論和展望
The Published Papers
Acknowledgements
References
Appendix
1. The abbreviations, physical parameters, and their units
【參考文獻(xiàn)】:
期刊論文
[1]基于GPU并行運(yùn)算的高效雷達(dá)成像譜估計(jì)算法[J]. 賈偉偉,張啟梅,許小劍. 制導(dǎo)與引信. 2014(04)
[2]杭州灣HJ CCD影像懸浮泥沙遙感定量反演[J]. 劉王兵,于之鋒,周斌,蔣錦剛,潘玉良,凌在盈. 遙感學(xué)報(bào). 2013(04)
[3]Spatial distribution of penetration depth in Taihu Lake (China) during spring and autumn[J]. 趙巧華,魏瀛珠,歐陽瀟然. Chinese Journal of Oceanology and Limnology. 2013(04)
[4]Application of MODIS data in monitoring suspended sediment of Taihu Lake,China[J]. 蔣興偉,唐軍武,張民偉,馬榮華,丁靜. Chinese Journal of Oceanology and Limnology. 2009(03)
[5]Retrieval of suspended sediment concentrations in the turbid water of the Upper Yangtze River using Landsat ETM+[J]. WANG JianJun~(1+) LU XiXi~1 ZHOU Yue~2 1 Department of Geography,National University of Singapore,10 Kent Ridge Crescent,119260 Singapore; 2 Department of Environmental Science,Kunming University of Science and Technology,Kunming 650093,China. Chinese Science Bulletin. 2007(S2)
[6]水體光譜測量與分析Ⅰ:水面以上測量法[J]. 唐軍武,田國良,汪小勇,王曉梅,宋慶君. 遙感學(xué)報(bào). 2004(01)
[7]Seasonal,neap-spring variation of sediment concentration in the joint area between Yangtze Estuary and Hangzhou Bay[J]. 陳沈良. Science in China(Series B). 2001(S1)
[8]Remote sensing analysis of surface suspended sediment concentration in the Changjiang Estuary[J]. 何青,惲才興,時(shí)偉榮. Progress in Natural Science. 1999(06)
[9]長江河口最大渾濁帶的泥沙特性和輸移規(guī)律[J]. 李九發(fā),時(shí)偉榮,沈煥庭. 地理研究. 1994(01)
本文編號:3010859
本文鏈接:http://sikaile.net/kejilunwen/haiyang/3010859.html
最近更新
教材專著