天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 海洋學論文 >

應用兩次展開法求解系泊柱體慢漂運動方程

發(fā)布時間:2020-02-18 07:30
【摘要】:在深海中系泊的海洋平臺,如Spar平臺,水下部分為帶有系泊的圓柱結構,其水平方向運動響應往往具有較低的自振頻率,容易在低頻波浪力(源于非線性的差頻效應)作用下發(fā)生共振響應,使結構發(fā)生大幅水平慢漂。當浮體的瞬時位置大幅偏離初始位置時,基于初始平衡位置的攝動展開法會存在較大誤差。針對這一問題,采用兩次展開方法,對大幅慢漂運動開展時域模擬研究。對雙色波作用下自由漂浮圓柱的大幅運動響應問題進行數(shù)值分析,并與采用基于初始平衡位置的攝動展開法的計算結果進行了對比。結果表明,采用新的兩次展開法可以計算出波浪遭遇頻率的變化和波浪漂移阻尼,而這無法從基于初始平衡位置的常規(guī)攝動展開法中得到,體現(xiàn)了兩次展開法在分析大幅慢漂問題上的優(yōu)勢。

【相似文獻】

相關期刊論文 前10條

1 翟大熙;;一種合成展開法的簡化[J];安徽師大學報(自然科學版);1985年02期

2 肖亞峰;薛海麗;張鴻慶;;關于G′/G展開法的注解[J];蘭州理工大學學報;2011年03期

3 蔡紅美,林忠;合成展開法解變厚度圓薄板大撓度問題[J];力學與實踐;1992年05期

4 阮可強,薛小剛,傅學東;一種節(jié)塊展開法[J];核科學與工程;2000年02期

5 張輝群;F-展開法的擴展及應用[J];應用數(shù)學;2005年04期

6 李靈曉;李保安;;利用推廣的(G′/G)-展開法求解Kononpelchenko-Dubrovsky方程[J];河南科技大學學報(自然科學版);2009年01期

7 蘇道畢力格;特木爾朝魯;;兩種廣義的(G′/G)-展開法及其應用(英文)[J];內蒙古大學學報(自然科學版);2010年02期

8 韓冰冰;;推廣的(G'/G)展開法求解非線性方程[J];赤峰學院學報(自然科學版);2010年05期

9 楊立波;洪寶劍;;利用G'/G展開法求解一般格子方程[J];淮陰工學院學報;2013年05期

10 周煥文;合成展開法應用于球殼對稱彎曲的邊界層問題[J];應用數(shù)學和力學;1983年06期

相關會議論文 前2條

1 王登營;李富;周旭華;郭炯;;圓柱幾何節(jié)塊展開法的研究[A];第十二屆反應堆數(shù)值計算與粒子輸運學術會議論文集[C];2008年

2 陸振球;譚春虎;薛強;陶智勇;;普遍聲逆散射微擾理論與形式參數(shù)展開法[A];1999年中國地球物理學會年刊——中國地球物理學會第十五屆年會論文集[C];1999年

相關博士學位論文 前1條

1 王琪;非線性微分方程求解和混沌同步[D];大連理工大學;2006年

相關碩士學位論文 前10條

1 余煒灃;函數(shù)展開法在求解非線性偏微分方程中的應用[D];寧波大學;2015年

2 孫龍;幾類生物模型解的漸近分析[D];安徽工業(yè)大學;2015年

3 焦向莉;Tanh函數(shù)展開法和CRE方法在非線性偏微分方程中的應用[D];寧波大學;2015年

4 王美麗;非線性偏微分方程的對稱性、構造性求解問題[D];寧波大學;2015年

5 張風云;應用擴展的F-展開法求解一類非線性偏微分方程[D];江蘇大學;2007年

6 王慶超;求解非線性偏微分方程的一種改進的F-展開法[D];江蘇大學;2006年

7 韓園媛;擴展的G’/G-展開法及其應用[D];沈陽師范大學;2013年

8 郭士民;兩種函數(shù)展開法與同倫攝動法在微分方程求解中的應用[D];蘭州大學;2010年

9 閆敬坤;利用擴展的F-展開法求解幾個孤子方程[D];鄭州大學;2009年

10 馬昆;非線性偏微分方程的精確解與廣義改進的F-展開法[D];江蘇大學;2008年

,

本文編號:2580653

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/haiyang/2580653.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶41f43***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com