Argo剖面浮標數(shù)據(jù)異常檢測方法研究
[Abstract]:Argo profile buoy is the only real-time method to obtain three-dimensional observational data from global upper ocean. The observed data reflect the distribution of ocean temperature and salt in three-dimensional ocean. It is very important to study ocean circulation and global climate change. The ocean analysis and forecast system provides the basis of data, and has very important application significance and scientific value. This paper takes the Argo profile buoy data as the breakthrough point of the marine big data information security research, aiming at the problem that the Argo profile buoy data is influenced by the uncertain factors such as environment, equipment and so on, which leads to the abnormal data. According to the characteristics of Argo profile buoy data, such as large amount of data, region, non-linear distribution, discrete and so on, an in-depth study on anomaly detection method of Argo profile buoy data is carried out in order to improve the accuracy of Argo profile buoy data. Reliability provides theoretical basis and technical means. In this paper, the training phase and anomaly detection phase of anomaly detection are analyzed and studied respectively. Firstly, in the training stage, aiming at the complicated format and huge data volume of the Argo profile buoy data file, a AMPC (information fusion algorithm for Argo profile base on MapReduce and Principal Curves) algorithm based on MapReduce technology for the generation of Argo main profile is proposed. In addition, the section information is classified by latitude and longitude to enhance the correlation between sections and highlight the regional characteristics of the section, and on the basis of K-principal curve theory, the algorithm uses MapReduce technology to improve the efficiency of execution effectively. The main section is generated by continuously adding fitting section points to reduce the amount of data stored in the anomaly detection phase, which provides reference for possible point exceptions, context exceptions, and set exceptions in the profile. Secondly, in the anomaly detection phase, the advantages of the anomaly detection method based on the "triple standard deviation" criterion and the anomaly detection method based on predictive model are drawn. An improved anomaly detection method based on adaptive anomaly threshold is designed, which combines the segmented "triple standard deviation" criterion and the prediction method of k-nearest neighbor profile and principal curve. In this method, the main section generated during the training stage is taken as a reference, and the deviation of the current section point to the main section and the influence of the variation trend of the profile with the depth on the anomaly detection are integrated, and the abnormal threshold values of each section point are calculated dynamically. Further improve the performance and detection effect of the anomaly detection method. The verification test shows that: through the verification of global Argo profile buoy data, the anomaly detection method based on the characteristics of Argo profile buoy data studied in this paper effectively combines historical profile data, and effectively avoids the one-sidedness of static threshold detection. It has good effect of anomaly detection, and the accuracy of anomaly detection is improved obviously.
【學(xué)位授予單位】:桂林電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:P715.2;TP311.13
【相似文獻】
相關(guān)期刊論文 前10條
1 黃麗超;陳國弟;;自動站雨量數(shù)據(jù)異常的處理方法[J];現(xiàn)代農(nóng)業(yè)科技;2010年01期
2 朱石軍;馬廣慶;趙帥;;延慶臺五里營井氣氡數(shù)據(jù)異常分析[J];四川地震;2013年04期
3 陳慶慶;張漢平;;自動站整點上傳數(shù)據(jù)異常處理方法[J];陜西氣象;2012年01期
4 黎錦雷;黃春莎;;一體化數(shù)據(jù)信息分析反饋[J];氣象研究與應(yīng)用;2013年04期
5 李鵬飛;;深層地溫數(shù)據(jù)異常原因探討[J];農(nóng)業(yè)與技術(shù);2012年10期
6 莫小梅;林展新;蘇崇升;彭自強;;10cm地溫數(shù)據(jù)異常分析及儀器故障排除[J];氣象水文海洋儀器;2012年02期
7 劉巖;王宗海;王青利;;自動氣象站數(shù)據(jù)異;蛉睖y的處理方法[J];現(xiàn)代農(nóng)業(yè)科技;2011年18期
8 宋明明;尹雪梅;李秀娟;;自動站雷擊后正點數(shù)據(jù)的處理[J];科技創(chuàng)新導(dǎo)報;2013年14期
9 陳明;樊新宇;;AMS-Ⅱ型自動氣象觀測系統(tǒng)降水數(shù)據(jù)異常情況的處理[J];氣象水文海洋儀器;2011年04期
10 張立清;張洪衛(wèi);;自動氣象站觀測數(shù)據(jù)異常的檢查方法[J];氣象水文海洋儀器;2010年03期
相關(guān)會議論文 前6條
1 蘇艷;胡少棟;胡映紅;;對自動氣象站數(shù)據(jù)異常原因及防范措施的探討[A];第七屆長三角氣象科技論壇論文集[C];2010年
2 華連生;溫華洋;徐光清;吳必文;汪臘寶;;“雙套站”氣溫模擬評估[A];第28屆中國氣象學(xué)會年會——S1第四屆氣象綜合探測技術(shù)研討會[C];2011年
3 秦榕;井立紅;何亞平;瑪依努爾·阿不拉;侯玲紅;;自動站凈全輻射異常值的處理方法[A];第26屆中國氣象學(xué)會年會第三屆氣象綜合探測技術(shù)研討會分會場論文集[C];2009年
4 許嘉玲;王超球;趙秀英;;自動氣象站數(shù)據(jù)異常的原因分析[A];2006年華南地區(qū)學(xué)術(shù)交流會論文集[C];2006年
5 陳璐;;北京地區(qū)自動氣象站數(shù)據(jù)異常因素分析[A];第28屆中國氣象學(xué)會年會——S1第四屆氣象綜合探測技術(shù)研討會[C];2011年
6 陳靜;張遠;張青珍;王國安;邢用書;;新氣象 新問題 新思路[A];第28屆中國氣象學(xué)會年會——S1第四屆氣象綜合探測技術(shù)研討會[C];2011年
相關(guān)重要報紙文章 前3條
1 東方證券首席經(jīng)濟學(xué)家 邵宇;三因素導(dǎo)致金融數(shù)據(jù)異常[N];第一財經(jīng)日報;2014年
2 本報記者 宋菁;兩項外貿(mào)數(shù)據(jù)異常[N];21世紀經(jīng)濟報道;2013年
3 本報記者 韓雪萌;結(jié)售匯數(shù)據(jù)異常 源于企業(yè)結(jié)匯動機減弱[N];金融時報;2014年
相關(guān)碩士學(xué)位論文 前1條
1 胡瑩;Argo剖面浮標數(shù)據(jù)異常檢測方法研究[D];桂林電子科技大學(xué);2016年
,本文編號:2452088
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2452088.html