基于統(tǒng)計(jì)方法的SST年際和年代際可預(yù)報(bào)性研究
[Abstract]:Climate system is a complex nonlinear system, and (not) predictability is its inherent attribute. Studies have shown that the interannual to Interdecadal predictability of the climate system comes mainly from the oceans. As an important part of the climate system, the sea surface temperature (SST) is an important factor to measure the climate average and variability. Therefore, it is of great significance to study the interannual and Interdecadal predictability of global sea surface temperature (SST), which can provide a basis for predicting future climate change. Predictability of climate variables is defined as the ratio of variance to total variance of predictable components. Similar to the empirical orthogonal function (EOF) decomposition, climate variables can be decomposed into linear combinations of predictable components and spatial structures according to the principle of maximum predictability. In this paper, the interannual, interdecadal predictability and predictable components of SST are studied by using the ERSST data reconstructed by NOAA and the simulated results of the GFDL model CM3 industrial pre-revolution test, respectively. Thus, the main areas of the ocean with interannual and interdecadal predictability are found. Through the analysis of the observed monthly average SST, it can be seen that the predictability of the monthly average global SST is 3 months, the predictability of the first predictable component is more than 2 years, and the spatial warming of the North Pacific and North Atlantic is abnormal. The long-term fluctuation characteristics of SST climate state similar to AMO are characterized. The predictability of the second and third predictable components is about 6 months. The interannual predictability is mainly concentrated in the tropical Pacific, and the predictability of SST in the tropical Pacific is 4 months. The predictable component has a structure similar to that of ENSO, and all of them show abnormal warming in the tropical Middle East Pacific. The second predictable component is highly correlated with Nino3 index. Therefore, the predictability of SST in the tropical Pacific comes from ENSO. Through the analysis of the average annual SST before the industrial revolution simulated by the CM3 model, it can be seen that the interdecadal predictability of the global SST is mainly concentrated in the middle and high latitudes when the leading time is one year. The predictable components of North Pacific and North Atlantic SST are predictable for more than 5 years and show obvious Interdecadal variability. The second predictable component of SST in the North Pacific is related to the Pacific Interdecadal oscillatory PDO to some extent. The second predictable component of the North Atlantic SST is well correlated with the AMO of the Atlantic Ocean intergenerational oscillation. To sum up, the interannual predictability of SST is mainly in the tropics and is related to ENSO, while the interdecadal predictability of SST is mainly in the middle and high latitudes, such as the North Pacific Ocean, the North Atlantic, the North Atlantic, Interdecadal predictability is associated with Pacific decadal oscillation (PDO) and Atlantic intergenerational oscillation (AMO).
【學(xué)位授予單位】:中國科學(xué)院研究生院(海洋研究所)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P732.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范曉青,李維京,張培群;模式大氣月尺度可預(yù)報(bào)性的對比研究[J];應(yīng)用氣象學(xué)報(bào);2003年01期
2 李建平;丁瑞強(qiáng);;混沌系統(tǒng)單變量可預(yù)報(bào)性研究[J];大氣科學(xué);2009年03期
3 丁瑞強(qiáng);李建平;;非線性誤差增長理論在大氣可預(yù)報(bào)性中的應(yīng)用[J];氣象學(xué)報(bào);2009年02期
4 丁瑞強(qiáng);李建平;;天氣可預(yù)報(bào)性的時(shí)空分布[J];氣象學(xué)報(bào);2009年03期
5 李忠賢;陳海山;倪東鴻;曾剛;;土壤濕度對東亞夏季氣候潛在可預(yù)報(bào)性影響的數(shù)值模擬[J];大氣科學(xué)學(xué)報(bào);2012年04期
6 J. G. Charney;J. Shukla;任合;;季風(fēng)的可預(yù)報(bào)性[J];氣象科技;1983年03期
7 Edward N.Lorenz;大氣的可預(yù)報(bào)性:有數(shù)學(xué)理論嗎?[J];海洋預(yù)報(bào);1988年S1期
8 Klaus Fraedrich;王玉清;;吸引子上天氣和氣候可預(yù)報(bào)性的估計(jì)[J];氣象科技;1988年05期
9 陳孝源;;因子的可預(yù)報(bào)性研究初探[J];浙江氣象科技;1991年04期
10 徐明,史玉光,張家寶,丑紀(jì)范;新疆氣溫長期變化可預(yù)報(bào)性的初步研究(一)──氣候噪音、潛在可預(yù)報(bào)性分析[J];新疆氣象;1994年04期
相關(guān)會(huì)議論文 前10條
1 曹鴻興;蔡秀華;吳永萍;;大氣的不可預(yù)報(bào)性[A];S2 短期氣候預(yù)測[C];2012年
2 林振山;;動(dòng)力系統(tǒng)可預(yù)報(bào)性問題的討論[A];中國地理學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文摘要集[C];2006年
3 穆穆;王家城;;非線性全局及局部最優(yōu)擾動(dòng)和第一類可預(yù)報(bào)性[A];自然、工業(yè)與流動(dòng)——第六屆全國流體力學(xué)學(xué)術(shù)會(huì)議論文集[C];2001年
4 楊修群;;季節(jié)平均氣候的潛在可預(yù)報(bào)性[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(上冊)[C];1999年
5 牛瑾琪;曹鴻興;牛保山;;基于界殼理論對天氣可預(yù)報(bào)性的探索[A];第31屆中國氣象學(xué)會(huì)年會(huì)S2 災(zāi)害天氣監(jiān)測、分析與預(yù)報(bào)[C];2014年
6 嚴(yán)小冬;金建德;雷云;嚴(yán)華生;;前期500hPa高度場與貴州降水可預(yù)報(bào)性的關(guān)系[A];中國氣象學(xué)會(huì)2005年年會(huì)論文集[C];2005年
7 丁瑞強(qiáng);李建平;;非線性誤差增長理論及可預(yù)報(bào)性研究[A];中國氣象學(xué)會(huì)2006年年會(huì)“季風(fēng)及其模擬”分會(huì)場論文集[C];2006年
8 穆穆;;可預(yù)報(bào)性研究中的一類動(dòng)力學(xué)問題(英文)[A];第七次全國動(dòng)力氣象學(xué)術(shù)會(huì)議論文摘要[C];2009年
9 譚季青;何歆;于京燕;;區(qū)域降水的實(shí)際可預(yù)報(bào)性研究[A];中國氣象學(xué)會(huì)2005年年會(huì)論文集[C];2005年
10 李延江;邵長亮;郭鴻鳴;燕成玉;吳杰;;渤海西岸區(qū)初春“3次”雷雨落區(qū)預(yù)報(bào)分析及可預(yù)報(bào)性探討[A];第26屆中國氣象學(xué)會(huì)年會(huì)災(zāi)害天氣事件的預(yù)警、預(yù)報(bào)及防災(zāi)減災(zāi)分會(huì)場論文集[C];2009年
相關(guān)重要報(bào)紙文章 前3條
1 丁繼武邋劉曉林 實(shí)習(xí)記者 崔潔;觀測系統(tǒng)研究與可預(yù)報(bào)性試驗(yàn)計(jì)劃研討會(huì)在京舉行[N];中國氣象報(bào);2007年
2 本報(bào)記者 丁繼武;氣候系統(tǒng)的混沌性質(zhì)和可預(yù)報(bào)性[N];中國氣象報(bào);2010年
3 通訊員 陳榮發(fā) 記者 肖國強(qiáng) ;提前兩年就能預(yù)報(bào)厄爾尼諾[N];浙江日報(bào);2004年
相關(guān)碩士學(xué)位論文 前10條
1 李啟芬;土壤濕度年際異常對氣候潛在可預(yù)報(bào)性的影響[D];南京信息工程大學(xué);2013年
2 孫樹鵬;10-30天延伸期穩(wěn)定分量的提取及其可預(yù)報(bào)性研究[D];蘭州大學(xué);2011年
3 趙曉川;中國月、季平均溫度和降水量的潛在可預(yù)報(bào)性估計(jì)[D];南京信息工程大學(xué);2008年
4 譚曉偉;觀測系統(tǒng)影響試驗(yàn)與可預(yù)報(bào)性研究[D];中國氣象科學(xué)研究院;2005年
5 劉景鵬;中國區(qū)域氣溫和降水月尺度可預(yù)報(bào)性的時(shí)空分布特征[D];中國氣象科學(xué)研究院;2014年
6 張磊;非線性優(yōu)化方法在大氣運(yùn)動(dòng)可預(yù)報(bào)性研究中的應(yīng)用[D];華東師范大學(xué);2005年
7 翟丹華;一次暴雨過程的中尺度可預(yù)報(bào)性研究[D];中國氣象科學(xué)研究院;2008年
8 王小萍;對T213L31模式實(shí)際可預(yù)報(bào)性的診斷研究[D];浙江大學(xué);2005年
9 陳中峗;基于副高活動(dòng)的T213模式在東亞地區(qū)的實(shí)際可預(yù)報(bào)性診斷研究[D];浙江大學(xué);2007年
10 孟佳佳;基于統(tǒng)計(jì)方法的SST年際和年代際可預(yù)報(bào)性研究[D];中國科學(xué)院研究生院(海洋研究所);2015年
,本文編號:2422911
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2422911.html