天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 海洋學(xué)論文 >

基于衛(wèi)星觀測的閃電和雷暴對ENSO事件的響應(yīng)研究

發(fā)布時間:2018-12-05 19:36
【摘要】:ENSO事件的發(fā)生,不僅會導(dǎo)致大尺度環(huán)流異常,還將會通過改變大氣環(huán)流、局地對流和環(huán)境氣象場的方式影響閃電活動的分布特征。本文基于LIS/OTD閃電格點資料(1995-2011)、熱帶降水測量計劃任務(wù)衛(wèi)星(TRMM)降水特征資料(1998-2011),研究了全球熱帶副熱帶地區(qū)(35°S-35°N)及東亞/東南亞地區(qū)(15°S-35°N,90°-130°E)季節(jié)尺度上閃電活動和雷暴對ENSO事件的響應(yīng)特征,并結(jié)合歐洲中期天氣預(yù)報中心(ECMWF)、美國國家環(huán)境預(yù)報中心(NCEP)和國家大氣研究中心(NCAR)的再分析氣象資料(1995-2011)進(jìn)一步分析了相應(yīng)的環(huán)境氣象場變化特征。主要結(jié)果如下:1.春、冬季全球熱帶副熱帶地區(qū)的閃電密度距平分布存在四類典型的區(qū)域:(1)閃電密度在ENSO冷暖相位時期都出現(xiàn)增加,增幅通常超過20%;(2)閃電密度在ENSO冷暖相位時期都出現(xiàn)減少,減幅通常不超過50%;(3)閃電密度在厄爾尼諾時期增加、拉尼娜時期減少;(4)閃電密度在厄爾尼諾時期減少、拉尼娜時期增多。厄爾尼諾時期閃電密度與海洋Nino指數(shù)(Oceanic Nino Index, ONI)顯著正相關(guān)的地區(qū)主要位于赤道和南半球大洋及其沿岸,拉尼娜時期顯著負(fù)相關(guān)的地區(qū)多位于南半球陸地。2.熱帶副熱帶范圍內(nèi),海平面氣壓相對下降的區(qū)域容易出現(xiàn)閃電密度正距平。厄爾尼諾時期升溫區(qū)(拉尼娜時期降溫區(qū))中閃電密度與ENSO強(qiáng)度的正相關(guān)較好。ENSO期間,太平洋及其沿岸(厄爾尼諾時期)和北印度洋沿岸(拉尼娜時期)的閃電與降水變化較為一致。3.在東亞/東南亞地區(qū),厄爾尼諾(拉尼娜)春、冬季的正距平(負(fù)距平)中心主要偏向中國東部和印度尼西亞南側(cè),夏、秋季的正距平(負(fù)距平)中心主要發(fā)生在赤道以北的地區(qū)。春季通常是四季中閃電密度變化強(qiáng)度和范圍最大的季節(jié)。在厄爾尼諾時期,中國東部和印度尼西亞地區(qū)的閃電密度距平百分比與ONI顯著正相關(guān);拉尼娜時期相關(guān)性減弱,中國東部為正相關(guān),印度尼西亞地區(qū)為負(fù)相關(guān)。厄爾尼諾時期印度尼西亞地區(qū)的閃電變化率(18%)大于中國東部(10%),拉尼娜時期中國東部閃電變化率(-21%)大于印度尼西亞地區(qū)(5%)。4.春季是厄爾尼諾時期雷暴頻數(shù)距平最明顯的季節(jié),拉尼娜春、冬季的雷暴頻數(shù)負(fù)距平比較明顯,夏、秋季的雷暴頻數(shù)正距平比較明顯。與閃電相比,ENSO時期雷暴與ONI相關(guān)性減弱,且中國東部的正相關(guān)好于印度尼西亞地區(qū)。中國東部的雷暴頻數(shù)變化率(厄爾尼諾時期-12%和拉尼娜時期-35%)比印度尼西亞地區(qū)(分別為7%和-3%)更大。ENSO對雷暴中閃電頻數(shù)的影響主要發(fā)生在40 dBZ最大回波頂高超過10 km的強(qiáng)深對流系統(tǒng)中。5.厄爾尼諾時期的印度尼西亞地區(qū)以及拉尼娜時期的中國東部,閃電變化與雷暴強(qiáng)度和數(shù)量變化都有密切關(guān)系。中國東部厄爾尼諾時期的閃電變化主要與雷暴強(qiáng)度變化有關(guān),印度尼西亞地區(qū)拉尼娜時期的閃電變化主要與雷暴數(shù)量變化有關(guān)。6.與對流有效位能(CAPE)和850 hPa相對濕度相比,ENSO時期東亞/東南亞地區(qū)近地層風(fēng)場變化對閃電密度距平分布的影響更加明顯,閃電密度正距平多出現(xiàn)在近地層變化風(fēng)場的交匯區(qū),閃電密度負(fù)距平多出現(xiàn)在近地層風(fēng)場變化較小或輻散的區(qū)域,這一特征在中國以南的島嶼和近海更為突出。較大幅度的閃電密度增加常常伴隨著CAPE的增加。厄爾尼諾時期850 hPa相對濕度距平和CAPE距平的分布與閃電距平對應(yīng)好于拉尼娜時期,并影響到閃電密度距平的分布特征。
[Abstract]:The occurrence of ENSO event can not only lead to large-scale circulation anomaly, but also influence the distribution of lightning activity by changing the atmospheric circulation, local convection and environmental weather field. Based on the data of the LIS/ OTD flash point data (1995-2011) and the satellite (TRMM) precipitation feature of the tropical precipitation measurement plan (TRMM) (1998-2011), the global tropical and subtropical regions (35 擄 S-35 擄 N) and East Asia/ South-East Asia (15 擄 S-35 擄 N, The response characteristics of lightning and thunderstorm to the ENSO event in the 90 擄-130 擄 E) seasonal scale and combined with the European Mid-term Weather Forecast Centre (ECMWF), The NCEP and NCAR reanalysis meteorological data (1995-2011) further analyzed the corresponding environmental weather field change characteristics. The main results are as follows: 1. In the spring and winter, there are four typical regions of the lightning density in the tropical sub-tropical region in winter: (1) the lightning density increases in the temperature and cooling phase of the ENSO, and the increase is usually more than 20%; (2) the lightning density is reduced in the cold and warm phase period of the ENSO, The reduction is usually no more than 50%; (3) the lightning density is increased during the El Nino period, and the La Nina period is reduced; and (4) the lightning density is reduced during the El Nino period and the La Nina period has increased. In the El Nino period, the density of the lightning and the Nino Index (ONI) of the ocean are mainly located in the oceans of the equator and the southern hemisphere and along the coast of the southern hemisphere, and the area with a significant negative correlation in the La Nina period is located in the land of the southern hemisphere. In the tropical sub-tropical region, the region where the sea level air pressure is relatively lowered tends to occur with a positive lightning density. The lightning density in the temperature rise area of the El Nino period (the temperature reduction zone in the La Nina period) is well correlated with the intensity of ENSO. The lightning and precipitation changes of the Pacific and its coast (El Nino) and the North Indian Ocean (Nino) were more consistent during the ENSO period. In East Asia/ Southeast Asia, the center of El Nino (Nino) spring and winter is mainly in the south of China and the south of Indonesia. In the summer and autumn, the center of the positive distance (negative distance) mainly occurs in the north of the equator. Spring is usually the season in which the intensity and range of lightning density change in the four seasons. In the El Nino period, the percentage of lightning density in eastern China and Indonesia is significantly positively related to ONI; the correlation between the Rarana period and the eastern part of China is positive, and the area of Indonesia is negative. The rate of lightning change (18%) in the Indonesian area of the El Nino period is greater than that of the eastern part of China (10%), and the rate of lightning change (-21%) in the eastern part of China is greater than that of the Indonesia area (5%). In spring, the number of thunderstorm frequency in the Nino period is the most obvious season, and the negative distance of the thunderstorm frequency in the spring and winter is obviously higher than that in the summer and autumn, and the number of thunderstorm frequency in the summer and autumn is more obvious. Compared with the lightning, the correlation between the thunderstorm and ONI in the ENSO period is reduced, and the eastern part of China is well correlated with the area of Indonesia. The rate of change in the number of thunderstorms in the eastern part of China (El Nino period-12% and La Nina period-35%) is greater than that in Indonesia (7% and -3%, respectively). The influence of ENSO on the frequency of lightning in a thunderstorm is mainly in a strong-depth convection system with a maximum echo top of more than 10km at the maximum echo top of 40dBZ. The change of lightning is closely related to the intensity and the number of thunderstorms in the Indonesian region of the El Nino period and in the eastern part of China during the La Nina period. The lightning change during the El Nino period in the eastern part of China is mainly related to the change of the intensity of the thunderstorm, and the change of the lightning in the area of La Nina in Indonesia is mainly related to the change of the number of thunderstorm. Compared with the relative humidity of the convection-effective-bit energy (CAPE) and the 850 hPa relative humidity, the influence of the change of the near-formation wind field in the East-East Asia/ Southeast Asia region on the distribution of the lightning density is more obvious in the ENSO period, and the lightning density is more and more in the intersection area of the near-formation-change wind field. The density of lightning is more negative in the area of small or scattered near-formation wind field, which is more prominent in the islands and the coastal waters south of China. A larger increase in lightning density is often accompanied by an increase in CAPE. The distribution of the relative humidity of 850 hPa and the distance of the CAPE in the El Nino period and the lightning distance level correspond to the La Nina period and affect the distribution characteristics of the lightning density.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P412.27;P732

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 盧愛剛;葛劍平;龐德謙;何元慶;龐洪喜;;40a來中國旱災(zāi)對ENSO事件的區(qū)域差異響應(yīng)研究[J];冰川凍土;2006年04期

2 楊慶萍,王蘇,王睿,韓品元,高中衛(wèi);洪澤湖枯水年比較及與ENSO事件關(guān)系[J];氣象科學(xué);2002年01期

3 許武成,馬勁松,王文;關(guān)于ENSO事件及其對中國氣候影響研究的綜述[J];氣象科學(xué);2005年02期

4 任廣成;余明祥;張哲;;ENSO事件與中國東南沿海3月降水關(guān)系分析[J];氣象與減災(zāi)研究;2008年01期

5 琚建華,李艷,黃儀方;ENSO事件對云南短期氣侯影響的研究[J];云南大學(xué)學(xué)報(自然科學(xué)版);2001年06期

6 劉春玲,張強(qiáng),許有鵬,姜彤;近半個世紀(jì)ENSO事件對長江三角洲地區(qū)氣候的影響[J];氣象;2005年03期

7 賴榮康;黃根華;魏曉宇;;枯水期西江徑流及流域降水對ENSO事件的響應(yīng)特征[J];云南大學(xué)學(xué)報(自然科學(xué)版);2010年S2期

8 楊龍;趙景波;;ENSO事件對河西走廊氣候與氣候災(zāi)害的影響[J];干旱區(qū)研究;2012年06期

9 信忠保,謝志仁;寧夏氣候變化對ENSO事件的響應(yīng)[J];干旱區(qū)地理;2005年02期

10 普布卓瑪,周順武,伏陽虎;ENSO事件對西藏夏季降水影響[J];西藏科技;2002年02期

相關(guān)會議論文 前10條

1 李秀存;李耀先;張永強(qiáng);;ENSO事件對廣西氣候的影響分析[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會文集[C];2000年

2 廖德春;王琪潔;周永宏;廖新浩;;用神經(jīng)網(wǎng)絡(luò)技術(shù)作ENSO事件的試驗預(yù)報[A];中國地球物理學(xué)會第二十三屆年會論文集[C];2007年

3 張鍵;李長青;;ENSO事件對中國東部降水的影響研究[A];首都師范大學(xué)五十周年校慶資源環(huán)境與旅游學(xué)院論文集[C];2004年

4 鄧興旺;;ENSO事件與夏季旱澇異常的關(guān)系初探[A];2004年湖北省氣象學(xué)會年會學(xué)術(shù)論文詳細(xì)摘要集[C];2004年

5 汪如良;;ENSO事件對南昌地區(qū)霍亂發(fā)病的影響[A];第26屆中國氣象學(xué)會年會氣候環(huán)境變化與人體健康分會場論文集[C];2009年

6 過仲陽;陳中原;潘黎帆;陸衍;;ENSO事件對錢塘江流域降水的影響[A];海峽兩岸地理學(xué)術(shù)研討會暨2001年學(xué)術(shù)年會論文摘要集[C];2001年

7 陶善昌;馬明;祝寶友;呂偉濤;譚涌波;;全球雷電活動的異常變化與ENSO事件[A];推進(jìn)氣象科技創(chuàng)新加快氣象事業(yè)發(fā)展——中國氣象學(xué)會2004年年會論文集(下冊)[C];2004年

8 邱明宇;陸維松;;ENSO事件與中高緯低頻振蕩[A];第六次全國動力氣象學(xué)術(shù)會議論文摘要[C];2005年

9 張果軍;王爾理;陳旭;;百年邵陽旱澇特征與ENSO事件的關(guān)系[A];中國氣象學(xué)會2006年年會“氣候變化及其機(jī)理和模擬”分會場論文集[C];2006年

10 古鳴;;ENSO事件對梧州市汛期降水的滯后影響效應(yīng)[A];2006年華南地區(qū)學(xué)術(shù)交流會論文集[C];2006年

相關(guān)碩士學(xué)位論文 前2條

1 邸悅倫;基于衛(wèi)星觀測的閃電和雷暴對ENSO事件的響應(yīng)研究[D];蘭州大學(xué);2015年

2 張沖;1950年以來ENSO事件對我國氣候影響研究[D];陜西師范大學(xué);2012年

,

本文編號:2365360

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/haiyang/2365360.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶06c8f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com