集合調(diào)整Kalman濾波同化模塊的建立及其在海洋和氣候系統(tǒng)模式中的應(yīng)用
[Abstract]:There are often large deviations between ocean model and climate system model in the actual application process. It is urgent to use more mature data assimilation method to effectively combine observation information in the numerical simulation process to obtain more reasonable simulation results or to improve the prediction accuracy by improving the initial value field. In data assimilation method, ensemble-adjusted Kalman filter (EAKF) assimilation method does not need perturbation observation, can fully retain the prior information of numerical model, and its calculation and storage requirements are relatively small. It is suitable for data assimilation of ocean and climate system models. The basic theory and related hypotheses are discussed. The serial implementation, parallel implementation, observation data processing and set sample processing of EAKF assimilation method are discussed. The EAKF assimilation module is established and then applied to the regional ocean model, the global ocean model and the air-sea coupling model. In order to compare and analyze the effect of regional ocean model data assimilation, three groups of numerical experiments were designed: control experiment (single mode operation, no data assimilation), aggregate free divergence experiment (aggregate operation, no data assimilation) and EAKF experiment (aggregate operation, no data assimilation). Assimilation experiment (collective operation, Argo data assimilation). The regional ocean model takes the initial field of different years as the initial field of different model samples in 2005, realizes the collective mode operation, carries out the collective free divergence experiment and EAKF assimilation experiment. The results of ensemble simulation show that the distribution of ensemble samples decreases in the first few months, but then stabilizes in a certain range. This method of constructing the initial field of ensemble is applied to the regional model. All the ensemble samples have certain divergence and can be used to carry out accurate ensemble filtering assimilation. The sample distribution is slightly smaller than that of the non-assimilated free-divergence experiment, but it still keeps a certain amount of value, which will have no adverse effect on the subsequent filtering assimilation process. As a result, all the experimental results were compared with SST, GTSPP temperature and salinity profiles and satellite altimeter data in detail. The error statistics showed that the error of the assimilation results was less than that of the satellite SST before assimilation, and the average reduction was about 10%. Compared with the GTSPP temperature and salinity profiles independent of Argo data, the error of the assimilation results was less than that of the satellite SST before assimilation. The results show that the temperature and salinity errors of the assimilated model are greatly reduced compared with those of the pre-assimilated model, and the maximum errors of relative control experiment and free divergence experiment are 85% and 80% respectively. In the global oceanic circulation model based on MOM4, EAKF assimilation of Argo buoy data in 2008 was carried out, and the results of four groups of Assimilation Experiments and control experiments (not assimilated) were compared and analyzed. The results show that the deviations of temperature (salinity) in the upper 400 m (500 m) water layer after assimilation of Argo data are significantly reduced, but these deviations increase in the deeper water layer; the deviations of SST in the first half of the year are significantly higher than those in the deeper water layer. In order to investigate the difference of the improvement effect of assimilation at different depths and different periods, three sensitivity experiments were designed. Two of them were used to analyze the sensitivity of different vertical disturbances: disturbance depth (experiment 2) and disturbance amplitude (experiment 3). In experiment 2, the disturbance of the whole water column was used, and the disturbance amplitude was still 1.0 C. The results show that the deviation of salinity decreases with the simulated temperature in the whole water body. In experiment 3, a small disturbance amplitude (0.1 C) is used, and the appropriate disturbance amplitude is also very important compared with experiment 2. In experiment 4, the set sample expansion is used, and the expansion coefficient is 5% obtained by a series of numerical experiments. Comparing with the three experiments, the assimilation performance of Experiment 4 has been greatly improved. Based on the above experimental results, we consider that all the layers of the model should be considered for the initial field perturbations: the appropriate amplitude of the perturbation plays an important role in EAKF assimilation; the selection of the optimal set of sample expansion coefficients helps to improve the effect of EAKF assimilation. The Earth System Model (FIO-ESM) of the First Institute of Oceanography, Jiahai Oceanic Administration, was used to construct a set of initial fields and to carry out EAKF Assimilation Experiments of satellite SST and SLA data. In this study, the assimilation of ocean model, atmospheric model, sea ice model, land surface model and ocean wave model was carried out using the assimilated data of climate system model. Results The climate reanalysis data from 1992 to 2013 were reconstructed and the reconstructed reanalysis data were evaluated as a whole. The data of ERA-Interim reanalysis data set, EN4 thermohaline reanalysis data set, GPCP precipitation data set, AVISO along-track observation of wave effective wave height were used in this study. The results show that the reconstructed reanalysis data can successfully reproduce the climatic characteristics of the upper ocean, atmospheric movement and water vapor distribution, sea ice changes, and wave climatic distribution during 1992-2013. Knowledge level
【學(xué)位授予單位】:中國海洋大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:P73;P435
【相似文獻】
相關(guān)期刊論文 前10條
1 張家寶;氣候系統(tǒng)究竟包括哪“五圈”[J];新疆氣象;2003年04期
2 ;合作與交流[J];Annual Report of CAMS;2003年00期
3 栗珂;氣候系統(tǒng)性態(tài)行為復(fù)雜性的探索[J];氣象科學(xué);2004年01期
4 栗珂;鄭小華;屈振江;;氣候系統(tǒng)性態(tài)行為信息探索[J];大氣科學(xué)研究與應(yīng)用;2007年02期
5 蘇京志;;氣候與氣候系統(tǒng)研究進展[J];Annual Report of CAMS;2009年00期
6 楊更生;氣候系統(tǒng)理論述評[J];絲路學(xué)刊;1994年01期
7 曹鴻興,,王永中;離散氣候系統(tǒng)中的周期與混沌[J];應(yīng)用氣象學(xué)報;1995年03期
8 鄭祖光,劉平,劉利紅,劉式達;一個簡化氣候系統(tǒng)的非線性特征[J];氣象學(xué)報;1997年05期
9 壽好綸;;南美洲的氣候系統(tǒng)和結(jié)構(gòu)[J];中學(xué)地理教學(xué)參考;1990年04期
10 ;氣候系統(tǒng)[J];中國經(jīng)濟信息;2002年08期
相關(guān)會議論文 前10條
1 樂群;束炯;;多參數(shù)非線性零維氣候系統(tǒng)的研究[A];地理教育與學(xué)科發(fā)展——中國地理學(xué)會2002年學(xué)術(shù)年會論文摘要集[C];2002年
2 俞永強;;氣候系統(tǒng)模式與全球氣候變化預(yù)測[A];新觀點新學(xué)說學(xué)術(shù)沙龍文集6:未來幾年氣候變化研究向何處去[C];2007年
3 任國玉;;關(guān)于氣候系統(tǒng)危險人為干擾的相關(guān)科學(xué)問題[A];中國氣象學(xué)會2005年年會論文集[C];2005年
4 史學(xué)麗;王蘭寧;;采用不同大氣模式對氣候系統(tǒng)模式中陸面變量的模擬效果分析[A];中國氣象學(xué)會2006年年會“氣候系統(tǒng)模式發(fā)展與應(yīng)用”分會場論文集[C];2006年
5 吳統(tǒng)文;;中國氣象局氣候系統(tǒng)模式研究進展[A];第26屆中國氣象學(xué)會年會全球和區(qū)域氣候模式及極端天氣氣候事件的模擬研究分會場論文集[C];2009年
6 嚴(yán)汾;蒙吉軍;;貴州省清鎮(zhèn)市近50年來氣候系統(tǒng)的多時間尺度分析[A];中國地理學(xué)會2006年學(xué)術(shù)年會論文摘要集[C];2006年
7 翁衡毅;;氣候系統(tǒng)對太陽活動非線性響應(yīng)引起的年際和年代際變化[A];第七次全國動力氣象學(xué)術(shù)會議論文摘要[C];2009年
8 吳統(tǒng)文;董文杰;宇如聰;羅勇;王蘭寧;張芳;;氣候系統(tǒng)模式BCC_CSM1.0.1簡介[A];中國氣象學(xué)會2007年年會氣候?qū)W分會場論文集[C];2007年
9 張麗霞;周天軍;吳波;包慶;;氣候系統(tǒng)模式FGoALS_s1.1對熱帶降水年循環(huán)模態(tài)的模擬[A];第七次全國動力氣象學(xué)術(shù)會議論文摘要[C];2009年
10 蘇同華;薛峰;孫泓川;周廣慶;;中國科學(xué)院氣候系統(tǒng)模式CAS-ESM-C模擬的ENSO循環(huán)[A];第八次全國動力氣象學(xué)術(shù)會議論文摘要[C];2013年
相關(guān)重要報紙文章 前10條
1 宇如聰;氣候系統(tǒng)模式簡介[N];中國氣象報;2014年
2 李曄;點燃?xì)夂蛳到y(tǒng)模式研發(fā)助推器[N];中國氣象報;2003年
3 中國氣象局預(yù)測減災(zāi)司 阮水根;積極向氣候系統(tǒng)領(lǐng)域拓展的戰(zhàn)略思考[N];中國氣象報;2003年
4 記者賴敏 鄭菲;氣候系統(tǒng)模式發(fā)展研討會舉行[N];中國氣象報;2009年
5 記者 郭起豪 實習(xí)記者 張倩;高分辨率氣候系統(tǒng)模式研制項目啟動[N];中國氣象報;2010年
6 陳磊 郭戰(zhàn)峰;氣候系統(tǒng)模式發(fā)展研究啟動[N];中國氣象報;2003年
7 記者 林英;氣候系統(tǒng)模式研究專家咨詢委員會成立[N];光明日報;2004年
8 李丹 郭戰(zhàn)峰;第三屆氣候系統(tǒng)與氣候變化國際講習(xí)班開班[N];中國氣象報;2006年
9 記者 林英;我國加強氣候系統(tǒng)綜合觀測能力[N];光明日報;2004年
10 記者 郭起豪 實習(xí)記者 張倩;第七屆氣候系統(tǒng)與氣候變化國際講習(xí)班開幕[N];中國氣象報;2010年
相關(guān)博士學(xué)位論文 前1條
1 尹訓(xùn)強;集合調(diào)整Kalman濾波同化模塊的建立及其在海洋和氣候系統(tǒng)模式中的應(yīng)用[D];中國海洋大學(xué);2015年
相關(guān)碩士學(xué)位論文 前1條
1 董仕;太陽紫外線異常變化對氣候系統(tǒng)影響的數(shù)值模擬[D];中國氣象科學(xué)研究院;2015年
本文編號:2207275
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2207275.html