天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 海洋學論文 >

基于遺傳BP神經網絡的海底沉積物聲速預報

發(fā)布時間:2018-08-22 17:49
【摘要】:隨著海洋地質學等學科的發(fā)展,以及海洋工程和海洋開發(fā)的需要,海底沉積物聲學特性研究具有重要的現(xiàn)實意義,并受到越來越廣泛的重視。海底沉積物通常被認為是一種固液雙相介質,其結構和物理性質直接決定了聲波在其中的傳播速度,是聲波傳播的物理基礎。構建明確、統(tǒng)一的海底沉積物聲速與物理參數(shù)模型,對于開展聲速反演、地聲模型建立、工程實踐等方面的研究都具有重要的意義。國內外的研究學者對縱波聲速與沉積物物理參數(shù)之間的相關關系進行了大量實際調查工作,建立了適用于不同海域沉積物的聲速與物理參數(shù)之間的經驗公式。這些經驗公式的建立在一定程度上揭示了兩者之間的相互關系,但由于經驗公式大多采用簡單的回歸擬合得到,再加上海洋沉積環(huán)境的多樣性及復雜性,在進行聲速預報時,存在回歸誤差過大、適用范圍有限、缺乏物理意義等問題。針對這些問題,本文將在已有BP神經網絡預測的基礎上,運用遺傳算法優(yōu)化其初始權值和閾值的方法,構建出基于含水量、孔隙度的聲速預報模型進行聲速預報。同時,將南沙海域采集得到的海底沉積物樣品分為兩部分,隨機抽取120組涵蓋陸架、陸坡、海槽等地貌單元的樣品作為訓練數(shù)據(jù),另外剩余6組作為測試數(shù)據(jù)。經試驗對比后發(fā)現(xiàn),在對本區(qū)域進行聲速預報時,宜采用遺傳算法優(yōu)化的BP神經網絡,其要優(yōu)于傳統(tǒng)的單參數(shù)、雙參數(shù)回歸擬合預報方法和國內外其他學者所得到的經驗公式。此種預報方法具有一定的科學依據(jù)和廣泛的應用前景,可在今后為建立明確、統(tǒng)一的聲速預報模型提供參考。
[Abstract]:With the development of marine geology and the need of marine engineering and marine development, the study of acoustic characteristics of seabed sediments has important practical significance and has been paid more and more attention. Seafloor sediments are generally considered as a solid-liquid biphasic medium, whose structure and physical properties directly determine the velocity of sound wave propagation in which, is the physical basis of acoustic wave propagation. The establishment of a clear and unified model of acoustic velocity and physical parameters of seabed sediment is of great significance for the research of acoustic velocity inversion, the establishment of a geoacoustic model, and engineering practice. Researchers at home and abroad have carried out a lot of practical investigations on the correlation between longitudinal wave velocity and sediment physical parameters, and established empirical formulas between sound velocity and physical parameters suitable for sediment in different sea areas. The establishment of these empirical formulas reveals the relationship between them to some extent. However, because most of the empirical formulas are obtained by simple regression fitting, coupled with the diversity and complexity of the marine sedimentary environment, in the prediction of sound velocity, There are some problems such as too large error of regression, limited scope of application and lack of physical meaning. Aiming at these problems, based on the existing BP neural network prediction, this paper uses genetic algorithm to optimize its initial weight and threshold value, and constructs a sound velocity prediction model based on water content and porosity to predict sound velocity. At the same time, the samples collected from Nansha sea area were divided into two parts. 120 groups of geomorphologic units including shelf, slope and trough were randomly selected as training data, and the remaining 6 groups were used as test data. It is found that the BP neural network, which is optimized by genetic algorithm, is superior to the traditional regression forecasting method with single parameter, double parameter and the empirical formula obtained by other scholars at home and abroad in the prediction of sound velocity in this region. This forecasting method has certain scientific basis and wide application prospect, which can be used as reference for the establishment of a clear and unified sound velocity prediction model in the future.
【學位授予單位】:中國科學院研究生院(海洋研究所)
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:P733.2;P714

【相似文獻】

相關期刊論文 前2條

1 羅忠輝;盧博;;基于主元分析技術的海底沉積物聲速預報方程[J];熱帶海洋學報;2009年03期

2 ;[J];;年期

相關碩士學位論文 前1條

1 陳文景;基于遺傳BP神經網絡的海底沉積物聲速預報[D];中國科學院研究生院(海洋研究所);2016年

,

本文編號:2197853

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/haiyang/2197853.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶6214b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com