海底甲烷滲漏背景下自生礦物形成控制條件數(shù)值模擬研究
[Abstract]:Methane anaerobic oxidation is an important biogeochemical process of submarine anaerobic sediments, which significantly regulates the balance of global methane budget and plays an important role in the global carbon and sulfur cycle. At the same time, the biogeochemical characteristics associated with the anaerobic oxidation of methane have also become the indicators of gas hydrate prospecting. Most of the previous studies have focused on the control of methane anaerobic oxidation by biological action and bioenergy, and lack of comprehensive consideration of methane anaerobic oxidation, diagenesis and solute migration to study the formation of autogenous minerals under the background of methane leakage. In this paper, based on the natural gas hydrate related autogenic mineral formation project, taking the southwest basin on the northern slope of the South China Sea as the study area, and combining the physical parameters and biogeochemical conditions of the study area, the TOUGHREACT simulation software is used. The control conditions for the formation of autogenous minerals under the background of methane leakage on the sea floor are studied. According to the actual physical parameters of the study area, by setting different simulation schemes, the characteristics of the time and space variation of the sulfate methane interface and the formation of the autogenous minerals under different methane leakage rates and hydrogeochemical conditions are studied. It is found that methane leakage rate has a significant effect on the formation of authigenic minerals. The larger the rate of methane leakage, the shallower the interface between sulfate and methane, the more intense the anaerobic oxidation of methane at the interface, and the larger the amount of calcite precipitation. The calcite precipitation at the interface is mainly controlled by the anaerobic oxidation of methane. When the methane leakage rate is 20 times higher than that of the basic scheme (7.60 脳 10 ~ (-2) mmolcm-2 a ~ (-1), the larger the methane leakage rate is, the earlier the precipitation time is, the lighter the precipitation position is and the larger the precipitation amount is. Methane leakage rate is the main controlling factor for the formation of dolomite, and the concentration of sulfate ion has a significant effect on the precipitation of dolomite. The lower the concentration of sulfate is, the greater the precipitation amount of dolomite is, and when the concentration of sulfate ion decreases by 3 times, The precipitation capacity of dolomite can be increased to more than 3 orders of magnitude, and the calcium ion concentration mainly affects the precipitation of calcite and magnesite, when the calcium ion concentration is 5 times higher than that of the basic scheme. Calcite precipitation is 0.16% higher than that of base scheme. When calcium concentration is 5 times lower than base scheme, magnesite precipitation is increased by about 5 orders of magnitude. Therefore, low calcium ion environment is favorable for magnesite precipitation. The temperature is controlled mainly from two aspects: reaction rate and equilibrium constant. With the increase of temperature, the amount of precipitate of ordoclase, potassium feldspar, sodium montmorillonite, calcium montmorillonite, chlorite, calcite, magnesite and pyrite increase. In conclusion, the formation of different authigenic carbonate rocks and sulphides can indicate different precipitation environments in the study of the formation of authigenic minerals in the context of methane leakage, taking into account biological processes, diagenesis and solute migration, Therefore, the combination of sedimentary mineral precipitation in practical work can better indicate the existence of natural gas hydrate at the bottom.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:P736.3
【相似文獻】
相關(guān)期刊論文 前10條
1 戴東林;;大同地區(qū)朱羅系沉積中的自生礦物及次生變化[J];成都理工大學(xué)學(xué)報(自然科學(xué)版);1963年02期
2 孫和平;李從先;;我國某些三角洲地區(qū)綠色自生礦物顆粒的研究[J];礦物巖石地球化學(xué)通訊;1988年01期
3 高戰(zhàn)朝;《海洋自生礦物》評價[J];海洋通報;1989年01期
4 謝蕾;王家生;林杞;;南海北部神狐水合物賦存區(qū)淺表層沉積物自生礦物特征及其成因探討[J];巖石礦物學(xué)雜志;2012年03期
5 彭琪瑞;沉積自生礦物研究[J];地質(zhì)地球化學(xué);1981年04期
6 朱佛宏;;海洋磷塊巖中鈾和稀土的自生礦物[J];海洋地質(zhì)動態(tài);2006年06期
7 盧效珍;太平洋中部柱狀沉積物中的自生礦物[J];海洋地質(zhì)與第四紀地質(zhì);1992年01期
8 陳麗蓉;名詞解釋[J];海洋科學(xué);1978年03期
9 Koichl Aoyagl;蔡仲祥;;用自生礦物研究古溫度及其在石油勘探中的應(yīng)用[J];海洋地質(zhì)譯叢;1985年02期
10 Н.Лисицына;朱成文;;世界大洋沉積物中的自生礦物[J];海洋地質(zhì)譯叢;1981年02期
相關(guān)會議論文 前1條
1 陳天虎;謝巧勤;徐惠芳;陳駿;季峻峰;;洛川紅黏土中納米自生礦物特征和古氣候的指示意義[A];中國礦物巖石地球化學(xué)學(xué)會第十屆學(xué)術(shù)年會論文集[C];2005年
相關(guān)碩士學(xué)位論文 前2條
1 劉肖;海底甲烷滲漏背景下自生礦物形成控制條件數(shù)值模擬研究[D];吉林大學(xué);2016年
2 魏銘聰;甲烷滲漏環(huán)境中自生礦物形成條件的實驗研究[D];吉林大學(xué);2016年
,本文編號:2179910
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2179910.html